An Electric Scooter Sharing System for Urban Mobility

CIVITAS FORUM 2016
28-30 September, 2016
Gdynia, Poland

Joško Deur, University of Zagreb, Croatia

Marko Cosmai, City of Dubrovnik Development Agency (DURA), Croatia
Introduction

• City of Dubrovnik’s public road transport
 – Dense traffic (cars, public transport buses, tourist buses, etc.)
 – Insufficiency of parking spots
 – Air and noise pollution by conventional vehicles
 – Narrow city roads, hilly roads (up to 10% slope), warm climate conditions
 – Habits towards use of scooters for personal city transport

• Main solutions towards sustainable urban transport
 – e-buses in city public transport (INTERREG project SOLEZ)
 – e-scooter sharing system (GreenGo Project)
 – Low emission zones and e-cars
 – Smart parking (SOLEZ)

• GreenGo project
 – A fleet of 100 e-scooters with 16 charging stations
 – Fully-automated e-scooter sharing system
 – Integrated into public bus transport system incl. intermodality option
City of Dubrovnik
Famous historical and tourist city; ‘Pearl of Adriatic’
GreenGo Dubrovnik: e-scooter sharing system

- 100 e-scooters, $P_n < 4$ kW (B-category driver’s licence), zero emission and no noise pollution
- 16 AC charging stations
- GPS/GPRS tracking and CAN powertrain data tracking
- User friendly
- Integrated into public bus system
- On-line reservation (through app)
- Automatic billing
- Open for citizens and guests (tourists)
Existing e-scooter sharing solutions

Barcelona

1. https://www.youtube.com/watch?v=zt6abZN3UI4
2. https://www.youtube.com/watch?v=A2ZDSskjK4w

Paris

1. https://www.youtube.com/watch?v=Y9JIGkoRHms
2. https://www.youtube.com/watch?v=BH_t10fLry0

Not appropriate in the view of City of Dubrovnik’s authorities, because the city is small and can be covered by charging stations, and because of significant logistics requirements/issues with such system (battery swapping system, irregular parking)
Concept of proposed sharing system
E-scooter tests

Repeating scooter launch tests under full throttle

Max. vehicle acceleration vs. velocity

Scooter launch response

Conventional scooter Piaggio FLY 50 2T

Max. torque and road load curves

Max. acceleration vs. velocity for repeating launch tests
E-scooter tests (cntn’d)

- One of three e-scooters (when set in the boost mode) approaches maximum torque curve of the conventional scooter.

- Maximum torque is significantly reduced in the normal (eco) mode.

- **Note**: The e-scooters typically have a larger motor e-motor torque capacity, and they can be tuned by producer for higher torque (at the expense faster battery aging).

- Two scooters with Li-Ion batteries have a good range of approx. 60 km for a city-like driving pattern.

<table>
<thead>
<tr>
<th>Range</th>
<th>E 1</th>
<th>E 2</th>
<th>E 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective range (range in E1 cycle) [km]</td>
<td>21.7 (34)</td>
<td>62.7</td>
<td>62.5</td>
</tr>
</tbody>
</table>
Additional electronic module on scooter

- **Scooter tracking**
- **GNSS (GPS, Galileo)**
- **Control Center**
- **Communication**
- **Charger**
 - **Cable**
 - **220V/50Hz**
 - **Serial communication**
- **Modified charger connector**
- **RFID card as a HW key replacement**
- **Memory**
- **Camera**
- **ON/OFF**
- **DIO**
 - **ON/OFF**
- **CPU**
- **Tracking**
- **GPS**
- **GPRS**
- **DIO**
- **Trunk Lock Actuator**
- **Seat Lock Actuator**
- **Powertrain data on-line acquiring through CAN bus**
- **On-board camera for accident reconstruction**

CIVITAS FORUM 2016 • 28-30 September 2016 • Gdynia • J. Deur
Charging station – connection spot

- The original schuko connector on scooter can be replaced by an automotive connector to provide safety function through proxy pin and NTC resistor (charging only when connector is plugged in and high-temperature monitoring)
- The connector can be of Type 2 with a locker option (see figure), or an other (simpler) type
- There can be communication between scooter and charging station through a CAN bus line, in order to monitor the charging process
Possible layouts of charging station

Facilitates entering and exiting the charging station; higher traffic flow

Compact arrangement

Convenient for spots along walls & hill-sides
User check-in/check-out at charging station

Check-in

- Authentication (RFID card, PIN)
- Scooter number is displayed (unplugged scooters are preferred if battery SoC is high enough)
- Connector and seat lockers open
- User plugs in the RFID card on a scooter slot
- User takes helmet
- User disconnects charging cable and puts it in seat compartment
- User drives the scooter
- In the case of stop, user takes the RFID card (disables the scooter)

Check-out

- Authentication (RFID card)
- Free charging spot is displayed
- Connector and seat lockers open
- User parks and plugs-in scooter
- Connector is locked automatically
- User returns helmet into seat compartment
- User takes RFID card from scooter to complete check-out process
- Charging process starts

Issued by city bus operator
Cell phone app functionality

- The app communicates with the sharing system control center.
- The app enables the user to:
 - Log in the system
 - Check available scooters
 - Find the nearest charging stations
 - Reserve a scooter
 - Enter required range to filter available scooters based on their SoC
 - Use navigation when driving
 - Online check of user’s account and re-payment
- The app can also serve to:
 - Check in/out (instead of RFID card)
 - User registration

Note: The use of app makes the system closer to open-platform system, because the user can leave scooter at any designated parking spot, while another user can check-in through app and take the scooter.
Concluding remarks

• A e-scooter sharing system including charging stations and a control center has been proposed with the target application in the City of Dubrovnik.

• The proposed e-scooter sharing system will represent a zero-emission alternative to the current conventional city bus transport, and from the user’s perspective (registration, payment etc.) it will be an integral part of the bus transport system.

• It will be fully automated in terms of charging requirements, easy to handle, safe and fun to use.

• In its initial variant the system can be used based on RFID card (and PIN), and it can be readily expanded towards using a cell phone app to facilitate user registration, scooter reservation, check in/out, account check, payment etc.

• The system of 100 scooters and 16 charging stations is planned to be developed and installed by the summer of 2017.
Thank you!

Prof. Joško Deur, Ph.D.

Contact Details

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
Ivana Lučića 5, 10000 Zagreb, Croatia
josko.deur@fsb.hr
http://www.fsb.hr/acg/jdeur