

POINTER

Measure Evaluation Results

28 – Noise Reduction in Ústí nad Labem

67 – Efficient Goods Distribution in Ústí nad Labem

THE CIVITAS INITIATIVE IS CO-FINANCED BY THE EUROPEAN UNION Deliverable F Date: November 2012

Page 2

Measure title: Noise Reduction + Efficient Goods Distribution in UNL

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

Executive summary

This package of priority measures evaluated together consists of measures for traffic noise reduction and development of efficient freight logistics.

A study was undertaken to identify the level of noise pollution in the city, to assess impact of measures for noise reduction and to develop a noise map so that problem areas can be targeted as part of the Ústí nad Labem Sustainable Urban Transport Plan. Based on study results, tools suitable for reduction of noise from traffic on local roads were designed through traffic planning and management, construction and technical solutions. A plan for efficient distribution of goods in the city was designed. Results were implemented into the Sustainable Urban Transport Plan of the city.

Noise reduction was aimed at linking noise emissions with a road map to provide a noise map for the city as well as modelling some proposed solutions for reduction of traffic noise and to evaluate effectiveness of individual proposed scenarios. The following noise reducing model scenarios were evaluated, affecting freight logistics as well as predominant individual motor transport in the city:

- implementation of a city ring road bypassing the city centre,
- flat reduction of traffic speed in the city by 10%,
- elimination of freight vehicles with weight over 3,5t from the city centre.

Reduction of noise emissions in the urban environment through reduction of traffic intensity appears to be little effective, due to the fact that even small decrease in noise emissions requires significant reduction of transport intensity, which is difficult to achieve on the urban road network and which is feasible only through radical measures, such as construction of bypasses and consequent transfer of traffic away from sensitive zones. Although, even such measures may only be temporary – released capacity on the original road may trigger new saturation of transport.

The research showed that complete banning of freight vehicles is not feasible in Usti nad Labem. The city is not primarily a tourist destination and it relies on freight deliveries. Restricting freight transport is an option but may be counterproductive because it could result in an increase of trips by private vehicles. It is therefore necessary to seek a solution that will optimise the level of freight traffic, minimise trips, implement logistics arrangements, etc., which would at the same time maintain economic activities in the affected locality.

Suitable tools include:

- Reasonable access charges for entering the city centre;
- Incentive promotion of ecological vehicles (via omission of fees or subsidies, establishment of ecological zones);
- Limiting access of vehicles above particular weight in specific localities.

Seven specific scenarios for noise reduction in Ústí nad Labem were evaluated in comparison to the Zero variant (do-nothing scenario).

The basic Zero variant reflects the current state with no additional efforts towards noise reduction.

Proposed scenarios A, B, C and D are considering construction of bypasses between selected roads. Such measures proved to have only local effect manifested mainly in the relevant city quadrants decreasing the noise level by 2 - 5 dB. In other city parts, the changes are only small. The scenario

proposing decrease of traffic intensity has low impact and is not sufficient for significant noise reduction.

The scenario E is proposing implementation of the complex system of bypasses resulted in slight decrease in noise emissions on several areas.

Scenario F considering flat decrease of traffic speed in the entire city road network showed improvements on all the city roads, but decrease the noise level only by 1 dB on average. The speed reduction has a potential to reduce noise emissions if implemented in more than 10%.

Results of the scenario G proposing exclusion of freight vehicles are most visible. The decrease of noise emissions is achieved on almost all the roads in the city by more than 5 dB on average. Exclusion of freight vehicles is an effective measure, but it is necessary to determine on which roads it is appropriate to implement it and what effect this will have on the outside zones.

In order to efficiently reduce noise emissions in the city, it was recommended to apply other technical solutions, such as noise barriers, use of innovative materials preventing noise, tunnel solutions, etc. The measure should be supported by suitable demand management strategies for individual transport aimed at traffic calming and reducing number of vehicles by shortening the number of parking lots available in the city centre, introducing the paid entrance to the central zones, implementing calming elements etc.

A Introduction

A1 Objectives

The measure objectives are:

(A) High level / longer term:

- To reduce noise pollution caused by traffic in Ústí nad Labem
- To minimize negative impacts of noise (mainly from freight transport) on citizens living in highly exposed areas
- (B) Strategic level:
 - To reduce the number of areas where noise is above 65 dB near the busiest roads
- (C) Measure level:
 - (1) To develop the emission noise map from noise generated by the current and predicted traffic in the city
 - (2) To identify problematic areas and roads with the highest level of noise emitted by the local traffic
 - (3) To propose measures reducing the noise emitted by cars for the most affected areas with regard to organisation and regulation of local traffic, targeted to year 2012
 - (4) To apply the traffic model and subsequently the noise model on the proposed solutions and include assessment of the proposals for effective distribution of goods in Ústí nad Labem

A2 Description

Ústí nad Labem has a target to reduce the proportion of residential areas located in areas exposed to noise levels above 65 dB as a result of busy roads. Studies were undertaken to gain a better understanding of noise impacts and measures reducing noise and to develop a noise map so that problem areas can be targeted as part of the Sustainable Urban Transport Plan of the city.

The measure was aimed at linking noise emissions with a road map to provide a noise map for the city, at modelling of proposed solutions for reduction of traffic noise and evaluating effectiveness of individual proposed scenarios.

The assessed scenarios were the following:

- Zero Scenario The current state of the infrastructure is preserved, no changes towards the noise reduction are made. This scenario serves as a basis for comparison with other options.
- Scenario A considering implementation of the southeast bypass between the 2nd class road number 261 (Litoměřická) and the 1st class road number 62 (Vodařská).
- Scenario B considering implementation of the southwest bypass between the 2nd class road number 261 (Litoměřická) and Jateční Street.
- Scenario C considering implementation of the northeast bypass between the 2nd class road number 528 (Petrovická) and the 1st class road number 62 (Vodařská).
- Scenario D considering implementation of the northwest bypass between the streets and Jateční and Božtěšická.
- Scenario E all the bypasses from previous scenarios are implemented.
- Scenario F considering decrease of the traffic speed by 10%.
- Scenario G excluding all the freight vehicles with the weight above 3,5 tonnes to determine the roads appropriate for such solution.

Tools for noise reduction and their suitability for implementation in Ústí nad Labem were reviewed, including possible implementation of greenery, noise walls, speed reduction, constructional changes on roads, suitable road surface or road profile, renewal of the vehicle fleet, avoiding crossroads, noise protection of buildings, traffic management, improvements of traffic flow or modifications of transport demand.

Possibilities to reduce noise through transport planning were examined involving modifications of road line and transverse profile, or intersections. Technical construction solutions for roads and buildings were looked at such as possibilities of road surface, noise protection and/ or architecture and design of buildings. Traffic management solutions were proposed regarding speed reduction, influencing traffic flow, restrictive measures, limiting transport demand and improvements in the vehicle fleet.

Based on the research into urban freight transport, a proposal for an optimal goods distribution system for the city was developed through analyses of the need for urban freight transport, its relations to the flow of goods and a survey of different distribution systems. The costs and benefits of distribution centres and freight villages were compared.

Solutions to reduce noise in the most affected areas in the city with high degree of freight transport were recommended and the action plan for improvements was compiled. Based on the findings, goods distribution scheme suitable for the city was developed and implemented into the SUTP of Ústí nad Labem.

B Measure implementation

B1 Innovative aspects

- New organisational arrangements or relationship by means of a traffic model of the city, noise emissions were calculated and most polluted areas were treated, particularly residential areas, schools and hospitals. Specific organisational schemes for personal vehicles and for freight vehicles were proposed and assessed.
- New physical infrastructure solutions a ring road bypassing the city centre was designed to lead unnecessary traffic and freight vehicles away from sensitive areas in the city centre. A complex of bypasses was proposed but had to be removed from the SUTP due to the pressure of a civil association "Stop the Tunnels", which protested against building new transport infrastructure in the city. Current political authorities in the city refuse this solution and it currently had to be removed from the SUTP in order to allow the document to be submitted for approval in the city.

B2 Research and Technology Development

The traffic planning software PHF-VISION from the company PHF Karlsruhe was used for development of the traffic model to calculate the traffic load for various scenarios.

The traffic model was based on following documents:

- National traffic census (2005)
- Directional survey on border crossings (2005)
- Timetable for construction work on highways and expressways in the Czech Republic
- Statistical lexicon of Municipalities in the Czech Republic (2005)
- Results of the traffic survey and noise measurements conducted by the processor (2009)
- Regulatory plan of Ústí nad Labem (2005)

The input data were: division of the area into individual zones, demographic and activity information for each zone, transport behaviour patterns of homogeneous groups of inhabitants, decision-making algorithms, offer of the transport network and offer of transport services.

The output data are matrixes of traffic volumes divided into three categories: personal vehicles, light trucks (less than 3.5 tonnes) and other freight vehicles (above 3.5 tonnes).

Based on the data, transport demand was calculated and transport demand matrixes were matched to the appropriate parameterised transport network. The matching was dependent on load capacity, iterative steps, defined network nodes and lines, length, category, capacity, initial speed, intersections, allowed movements and length of delay.

Differences in the burden of the road network for different scenarios and different time periods were identified. The final output was the annual average daily traffic intensity on the network (AADT).

The list of noise maps developed within the measure is the following:

- 1) Current state
- Level of noise emissions on the current road network in Ústí nad Labem (2009) day-time (6 a.m. 10 p.m.)
- Level of noise emissions on the current road network in Ústí nad Labem (2009) night-time (10 p.m. 6 a.m.)

City:	Ústí nad Labem	Project:	Archimedes	Measure number:	28 + 67

2) Model scenarios

Measure title:

- Traffic noise emissions Zero scenario for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Zero scenario for the year 2012 night-time (10 p.m. 6 a.m.)
- Traffic noise emissions Scenario A for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Scenario A for the year 2012 night-time (10 p.m. 6 a.m.)
- Traffic noise emissions Scenario B for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Scenario B for the year 2012 night-time (10 p.m. 6 a.m.)
- Traffic noise emissions Scenario C for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Scenario C for the year 2012 night-time (10 p.m. 6 a.m.)
- Traffic noise emissions Scenario D for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Scenario D for the year 2012 night-time (10 p.m. 6 a.m.)
- Traffic noise emissions Scenario E for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Scenario E for the year 2012 night-time (10 p.m. 6 a.m.)
- Traffic noise emissions Scenario F for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Scenario F for the year 2012 night-time (10 p.m. 6 a.m.)
- Traffic noise emissions Scenario G for the year 2012 day-time (6 a.m. 10 p.m.)
- Traffic noise emissions Scenario G for the year 2012 night-time (10 p.m. 6 a.m.)
- Difference in noise emissions between the Zero scenario and the scenario A for the year 2012 day-time (6 a.m. 10 p.m.)
- Difference in noise emissions between the Zero scenario and the scenario B for the year 2012 day-time (6 a.m. 10 p.m.)
- Difference in noise emissions between the Zero scenario and the scenario C for the year 2012 day-time (6 a.m. 10 p.m.)
- Difference in noise emissions between the Zero scenario and the scenario D for the year 2012 day-time (6 a.m. 10 p.m.)
- Difference in noise emissions between the Zero scenario and the scenario E for the year 2012 day-time (6 a.m. 10 p.m.)
- Difference in noise emissions between the Zero scenario and the scenario F for the year 2012 day-time (6 a.m. 10 p.m.)
- Difference in noise emissions between the Zero scenario and the scenario G for the year 2012 day-time (6 a.m. 10 p.m.)

The road network model was based on the model of private vehicles in the Czech Republic calculated to the level of 3rd class roads, including roads of European importance abroad. This model is continuously updated and used for the needs of local authorities.

The traffic model was used to simulate the current state of transport and the foreseen future state of the traffic load. The input data corresponded with the Regulatory plan of the city from the year 2005.

Noise emissions were calculated on a model using the software VISUM and the module Environment. Calculations were based on the German standard RLS-90 (Richtlinien für den Lärmschutz an Straßen).

The input data were:

1) The standard hourly traffic volume counted as a percentage of 24-hour model volume

- 2) Proportion of trucks
- 3) Type of road surface
- 4) Speed of traffic flow
- 5) Longitudinal gradient of the road

Problems related to noise emissions in the city were identified. Noise reducing model solutions were developed in 7 scenarios. These solutions involved proposals to construct specific bypasses, implement speed reduction by 10% and exclude freight transport from certain city parts. (For more details on model solutions, please see the section C1.2)

Furthermore, organisational and technical solutions for noise protection suitable for Ústí nad Labem were identified. This includes application of greenery, noise walls, speed reduction, constructional changes on roads, road surface, road profile, renewal of vehicle fleet, avoiding crossroads, noise protection of buildings, traffic management, improvements of traffic flow and modification of transport demand.

Based on the research into urban freight transport, a proposal for an optimal goods distribution system for the city was developed through analyses of the need for urban freight transport, its relations to the flow of goods and a survey of different distribution systems. The costs and benefits of distribution centres and freight villages were compared.

The new concept for goods distribution was analysed based on the existing distribution patterns (origin and destination, time scheme, volumes, periodicity etc.). Findings were processed by the traffic and noise model and evaluated, including economic parameters (vehicle/km), time consumption, traffic volumes and number of affected inhabitants.

Implementation of a goods distribution centre for centralised consolidation and deconsolidation of goods flows was recommended. It should be located on the outskirts by a major route with sufficient capacity (ideally by a highway, railway freight terminal, water container port or freight airport), in order to avoid burden to the urban infrastructure caused by transporting goods from manufacturers/distributors by large vehicles. Supply between the goods distribution centre and the city would be performed by smaller vehicles, which would serve more recipients on a single route, which would minimise number of trips realised in the city. However, such a solution is not currently feasible due to different ways of logistic management of individual businesses and lack of will to cooperate in the market competition.

Establishing goods distribution centres or freight villages revealed not to be effective (higher costs than benefits) and rather complicated for the city due to negligence of local competing companies in mutual distribution logistics.

The proposal instead involves restrictions for freight transport in the city, reasonable charges for entering the city centre and promotion of ecological vehicles (via omissions of fees or subsidies). The solution recommends establishing ecological zones in the city, along with speed reduction where speed limit exceeds 50km/hour in order to reduce noise burden in the city. Specific roads were proposed for excluding freight vehicles completely and suitable bypassing roads were proposed.

B3 Situation before CIVITAS

Ústí nad Labem is located at a railway junction on the important waterway Elbe, and in the near future, it will be fully connected to the major motorway D8 that links Prague with Dresden. As a result, there is a large volume of traffic noise, particularly freight related noise, which the city aims to reduce. The city is an important industrial centre of the region carrying a high degree of freight transport, which contributes to increasing noise levels. The increasing transport intensity contributes to an increasing noise burden for citizens living near main transport corridors.

Current goods distribution in the city is performed individually with no coordination. In the current state, integration of urban logistics in Ústí nad Labem is an issue with many influencing factors. Primarily, the city is a competitive environment. Due to large number of businesses (reception points for supplies) on a relatively small area in the city centre, transport performance of supply vehicles is significant. Each shop and each supplier have their own logistic organisation. In practice, every recipient in the city addresses supply separately, either by own logistics architecture or in combination with transport carried out by distributors. This situation results in a large number of trips performed in the city often by large vehicles serving more reception points. Small operators are supplied with smaller vehicles (light trucks, vans or passenger cars), serving mostly only one recipient and thus increasing number of performed trips. Furthermore, there are traffic flows leading through the centre of Ústí nad Labem, which do not have either source or destination in the territory, nor is utility value added to these goods.

B4 Actual implementation of the measure

The measure was implemented in the following stages:

Stage 1: (October 2008 – April 2009) – Development of emission noise map from traffic in the city

The traffic planning software PHF-VISION [®] from the company PHF Karlsruhe was used for the development of the traffic model to calculate the traffic load for various scenarios. The noise emissions are calculated on a model using the software VISUM [®] and the module Environment. Calculations are based on the German standard RLS-90 (Richtlinien für den Lärmschutz an Straßen).

Calculations were based on the standard hourly traffic volume counted as a percentage of 24-hour model volume, the proportion of trucks, type of road surface, speed of traffic flow and the longitudinal gradient of the road.

The primary output of the noise study was an emission noise map for the existent motor-vehicle traffic (the map for day-time and night-time period). (Please see the noise maps for individual model scenarios in the section C1.2).

Stage 2: (May 2009 – September 2009) Identification of traffic noise related problems

Based on the emission noise map, major problems related to traffic noise in the city were revealed. The noise maps were compared with demographic distribution of inhabitants in individual city zones. Roads with the highest noise burden were identified.

The motorway, as the strongest source of noise emissions on the road network, was assessed. It was presented that it does not have to have a negative impact on the citizens if it is situated in a proper distance from the residential areas and the noise is properly prevented.

Major problems present local roads leading directly through the residential areas or in their close distance, where traffic is realised partially by vehicles of residents themselves and its volume is difficult to reduce.

Potential was revealed in reducing the transit traffic and the freight traffic. Other technical and organisational solutions were proposed, such as speed reduction, implementation of one-way roads, improvements to a road surface etc.

Stage 3: (October 2009 – April 2010) – Development of scenarios for traffic noise reduction and their assessment

Based on identified noise burden and traffic noise related problems, noise reducing model solutions were developed in 7 scenarios. These solutions involved proposals to construct city bypasses, implement speed reduction by 10% and exclude freight transport from certain city parts.

Furthermore, organisational and technical solutions for noise protection suitable for the city were identified. This include application of greenery, noise walls, speed reduction, constructional changes on roads, road surface, road profile, renewal of vehicle fleet, avoiding crossroads, noise protection of buildings, traffic management, improvements of traffic flow and modification of transport demand.

Stage 4: (*May 2010 – April 2011*) – *Application of noise maps on freight transport in the city, development of goods distribution scheme*

Measures regulating freight transport and minimising negative impacts of freight related noise on city inhabitants were examined through transport planning, modifications of road line and transverse profile, technical construction solutions for roads and buildings, including possibilities of road surface, noise protection and/ or architecture and design of buildings. Traffic management solutions were proposed involving speed reduction, influencing traffic flow, restrictive measures, limiting transport demand and improvements in the vehicle fleet.

Based on the research into urban freight transport, a proposal for an optimal goods distribution system for the city was developed through analyses of the need for urban freight transport, its relations to the flow of goods and a survey of different distribution systems. The costs and benefits of distribution centres and freight villages were compared.

Stage 5: (*May 2011 – October 2011*) – *Development of action plans for noise reduction and freight distribution for the SUTP of Ústí nad Labem*

Solution for noise reduction and urban logistics dealing with traffic organisation and infrastructure changes, together with addressing the entire problem of city motor transport, were incorporated into the SUTP with the objectives to reduce traffic noise and limit number of trips performed in the central area, excluding all unnecessary trips without its source or destination in the area, which does not bring any benefit to the territory. For this traffic load, alternative route was proposed in terms of a city ring road bypassing the city centre and involving tunnel section and construction of two new bridges over the Elbe river. This most effective solution was not accepted by current city authorities and was removed from the SUTP of Ústí nad Labem. It currently remains only a theoretical solution.

Additional solutions regulating traffic in the city, lowering the noise burden and discouraging drivers from entering the area were proposed, such as implementation of a system of one-way roads, speed reduction, access restriction to public transport only, etc.

City:Ústí nad LabemProject:ArchimedesMeasure number:28 + 67

B5 Inter-relationships with other measures

The measure is related to other measures as follows:

- Task 11.8.9, SUTP development The important tool for noise reduction and goods transport optimisation system were based on the proposal of new infrastructure, which were included in the SUTP.
- Measure 26, Strategic Traffic Management Traffic management is one of the effective tools for noise reduction and efficient freight logistics in the city in terms of optimising traffic flow, decreasing the amount of pollution and establishing background for goods distribution.
- Measure 27, City Centre Access Control Regulating entrance to the city centre helps to protect sensitive areas in the city from excessive noise from traffic.

Measure title: Noise Reduction + Efficient Goods Distribution in ÚNL

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

C Impact Evaluation Findings

C1 Measurement methodology

C1.1 Impacts and Indicators

Table C1.1.1: Indicators

NO.	EVALUATION CATEGORY	EVALUATION SUB-CATEGORY	IMPACT	INDICATOR	DESCRIPTION	DATA /UNITS
	ECONOMY					
2a		Costs	Operation costs	Operation costs	Costs per pkm	Euros/pkm, quantitative, derived or measurement
2b		Costs	Capital Costs	Capital Costs	Total investment cost for the scenario	Euros per project
2c		Costs	Maintenance Costs	Maintenance Costs	Total maintenance cost for the CBA period	Euros per period, discounted
	ENVIRONMENT					
		Pollution/Nuisance	Noise	Noise impact	Population impacted by noise above level	Euros per noise level – number of affected inhabitants – modelled + survey
		Pollution/Nuisance	Noise	Noise level	Computed noise levels in various scenarios	quantitative, collected, derived
8		Pollution/Nuisance	Emissions	CO2 emissions	CO2 per modelled scenario	Kg (tons), quantitative
9		Pollution/Nuisance	Emissions	CO emissions	CO per modelled scenario	Kg (tons), quantitative
10		Pollution/Nuisance	Emissions	NOX emissions	NOX per modelled scenario	Kg (tons), quantitative
11		Pollution/Nuisance	Emissions	Particulate emissions	Particulate per modelled scenario	Kg (tons), quantitative
	TRANSPORT					
25		TRANSPORT SYSTEM	Freight Movements	Goods vehicles moving in demo areas	Daily number of goods vehicles moving in area	No, Quantitative, derived or measurement

Measure title:

Noise Reduction + Efficient Goods Distribution in ÚNL

City: Ústí nad Labem

Project: Archimedes

Measure number: 28 + 67

Table C1. 1. 2: Method for evaluation of indicators						
NO.	INDICATOR	TARGET VALUE	SOURCE OF DATA AND METHODS	FREQUENCY OF DATA COLLECTION		
2a	Total operation costs	+ 5 %	Traffic model of basic ZERO scenario compared to scenarios of reduced noise – data collected before and after model implementation – operation costs of all users for evaluated period, discounted	2 x		
2b	Capital costs		Evaluation of investment cost for new infrastructure, modifications and proposed regulations	1x		
2c	Maintenance costs		Maintenance costs for new infrastructure or regulation tools during the project life	1x		
	Noise impact	25 %	Percentage of people affected by traffic noise based on noise model and population distribution; simulation of before and after scenarios	2 x		
	Noise level	- 5 %	Noise model – do-nothing scenario compared with pro-active scenario	2 x		
8	CO2 emissions	- 5 %	Calculation by traffic model + environmental calculation modul PHF	2x		
9	CO emissions	- 5 %	Calculation by traffic model + environmental calculation modul PHF	2x		
10	NOX emissions	- 5 %	Calculation by traffic model + environmental calculation modul PHF	2x		
11	Particulate emissions	- 5 %	Calculation by traffic model + environmental calculation modul PHF	2x		
25	Goods vehicles moving in demo areas	- 15 %	Traffic model basic scenario compared to selected pro-active scenarios	2 x		

Data for the traffic model were collected from the following sources:

- National traffic census (2005)
- Directional survey on border crossings (2005)
- Timetable for construction work on highways and expressways in the Czech Republic
- Statistical lexicon of Municipalities in the Czech Republic (2005)
- Results of the traffic survey conducted by the processor (2010) on spot traffic counting on major roads in the city
- The Regulatory plan of Ústí nad Labem (2005)

Data were processed by the traffic planning software PHF-VISION (<u>www.ptv.de</u>) from the company PHF Karlsruhe. Transport demand was modelled by the software VISEM 8.10, transport demand matrixes were matched to the appropriate parameterised transport network by the software VISUM. The noise emissions are calculated by the module Environment of the software VISUM. Calculations are based on the German standard RLS-90 (Richtlinien für den Lärmschutz an Straßen).

C1.2 Establishing a Baseline

Seven specific scenarios for traffic noise reduction were defined, processed through the traffic model and evaluated in terms of their economic (capital, operating and maintenance) costs and benefits in order to find the most effective solutions reducing the noise impact in specific sensitive areas in the city. Proposed scenarios were compared to the do-nothing scenario. Traffic emissions and freight vehicles operating in the city were simulated on the traffic model of Ústí nad Labem.

Proposals for modifications of the transport network were simulated on a macroscopic model of the city to assess overall changes and impacts of specific measures on the entire city. The fundamental principles of the proposals were examined to reveal effectiveness of measures application, without regard to details of the road network (such as width ratio, speed bumps or other infrastructure components). (For more details about the solutions, please see the Archimedes deliverable R28.1 Study of Noise Reduction in Usti nad Labem).

Effectiveness of the following scenarios was evaluated:

Zero Scenario

The Zero Scenario (do-nothing) reflects the existing state, with the current state of transport infrastructure, no changes towards noise reduction and completed structures, which are currently in development (only minor part of the transport network). This scenario serves as a basis for comparison with other options.

(Please see the maps 1.1, 2.1, 2.2, 4.1, 5.1, and 5.2)

Figure C1.2.1 – The existing road network in Ústí nad Labem (year 2009), distinguishing roads by their type

Figure C1.2.2 – Level of traffic noise emissions on the current road network in the city (in 2009) during the day-time period (6am - 10pm)

Figure C1.2.3 - Level of traffic noise emissions on the current road network in the city (in 2009) during the night-time period (10pm - 6am)

Figure C1.2.4 – The road network in the city considered for the Zero scenario (year 2012)

City: Ústí nad Labem Project: Archimedes

Figure C1.2.5 - Level of traffic noise emissions in the Zero scenario (year 2009) during the day-time period (6am – 10pm)

City:Ústí nad LabemProject:ArchimedesMeasure number:28 + 67

Figure C1.2.6 - Level of traffic noise emissions in the Zero scenario (year 2009) during the day-time period (6am - 10pm)

Scenario A

The scenario is proposing implementation of the southeast bypass between the 2nd class road number 261 (Litoměřická) and the 1st class road number 62 (Vodařská). (Please see the maps 4.2, 5.3, 5.4 and 6.1)

Figure C1.2.7 – The road network in the city considered for the Scenario A (year 2012)

Figure C1.2.8 - Level of traffic noise emissions in the Scenario A in the city (in 2009) during the day-time period (6am - 10pm)

Ústí nad Labem Project: Archimedes

City:

Figure C1.2.9 - Level of traffic noise emissions in the Scenario A in the city (in 2009) during the night-time period (10pm - 6am)

Figure C1.2.10 – Difference in traffic noise emissions between the Zero Scenario and the Scenario A (year 2012) during the day-time (6am – 10pm)

<u>Scenario B</u>

The scenario is proposing implementation of the southwest bypass between the 2nd class road number 261 (Litoměřická) and Jateční Street. (Please see the maps 4.3, 5.5, 5.6, and 6.2)

Figure C1.2.11 - The road network in the city considered for the Scenario B (year 2012)

Figure C1.2.12 - Level of traffic noise emissions in the Scenario B in the city (in 2009) during the day-time period (6am – 10pm)

Figure C1.2.13 - Level of traffic noise emissions in the Scenario B in the city (in 2009) during the night-time period (10pm – 6am)

Figure C1.2.14 - Difference in traffic noise emissions between the Zero Scenario and the Scenario B (year 2012) during the day-time (6am – 10pm)

Scenario C

The scenario is proposing implementation of the northeast bypass between the 2nd class road number 528 (Petrovická) and the 1st class road number 62 (Vodařská). (Please see the maps 4.4, 5.7, 5.8 and 6.3)

Figure C1.2.15 - The road network in the city considered for the Scenario C (year 2012)

Figure C1.2.16 - Level of traffic noise emissions in the Scenario C in the city (in 2009) during the day-time period (6am – 10pm)

Figure C1.2.17 - Level of traffic noise emissions in the Scenario C in the city (in 2009) during the night-time period (10pm - 6am)

Figure C1.2.18 - Difference in traffic noise emissions between the Zero Scenario and the Scenario C (year 2012) during the day-time (6am – 10pm)

<u>Scenario D</u>

The scenario is considering implementation of the northwest bypass between the streets and Jateční and Božtěšická. (Please see the maps 4.5, 5.9, 5.10, 6.4)

Figure C1.2.19 - The road network in the city considered for the Scenario D (year 2012)

Ústí nad Labem Project: Archimedes Measure number:

Figure C1.2.20 - Level of traffic noise emissions in the Scenario D in the city (in 2009) during the day-time period (6am - 10pm)

Figure C1.2.21 - Level of traffic noise emissions in the Scenario D in the city (in 2009) during the night-time period (10pm - 6am)

Figure C1.2.22 - Difference in traffic noise emissions between the Zero Scenario and the Scenario D (year 2012) during the day-time (6am – 10pm)

<u>Scenario E</u>

In this scenario, all the bypasses from previous scenarios (A, B, C and D) are implemented. (Please see the maps 4.6, 5.11, 5.12, and 6.5).

The scenario is based on the current state of transport infrastructure with completed structures, which are currently in development, and implemented proposed bypasses. It considers current state of traffic intensities with traffic growth foreseen by the Directorate of Roads and Highways.

This scenario was used for evaluation of measure effects.

Figure C1.2.24 - Level of traffic noise emissions in the Scenario E in the city (in 2009) during the day-time period (6am – 10pm)

Figure C1.2.25 - Level of traffic noise emissions in the Scenario E in the city (in 2009) during the night-time period (10pm - 6am)

Figure C1.2.26 - Difference in traffic noise emissions between the Zero Scenario and the Scenario E (year 2012) during the day-time (6am – 10pm)

<u>Scenario F</u>

The scenario is considering flat decrease of the traffic speed by 10% on the entire city network (Please see the maps 5.13, 5.14, 6.6).

The scenario is based on the current state of transport infrastructure with completed structures, which are currently in development. It considers current state of traffic intensities with traffic growth foreseen by the Directorate of Roads and Highways.

It presents effectiveness of implementing speed reduction on individual streets in the city and evaluation of results helps to decide which streets are suitable for speed reduction in terms of reducing traffic noise

Figure C1.2.27 - Level of traffic noise emissions in the Scenario F in the city (in 2009) during the day-time period (6am – 10pm)

Figure C1.2.28 - Level of traffic noise emissions in the Scenario F in the city (in 2009) during the night-time period (10pm - 6am)

Figure C1.2.29 - Difference in traffic noise emissions between the Zero Scenario and the Scenario F (year 2012) during the day-time (6am – 10pm)

<u>Scenario G</u>

The scenario considers excluding all the freight vehicles with the weight above 3,5 tonnes from the city to determine the roads appropriate for such solution (Please see the maps 5.15, 5.16 and 6.7). This hypothetical scenario presents effectiveness of excluding freight transport from individual streets in the city and evaluation of results helps to decide which streets are suitable for such restriction in terms of reducing traffic noise

Figure C1.2.30 - Level of traffic noise emissions in the Scenario G in the city (in 2009) during the day-time period (6am – 10pm)

Figure C1.2.31 - Level of traffic noise emissions in the Scenario G in the city (in 2009) during the night-time period (10pm - 6am)

Figure C1.2.32 - Difference in traffic noise emissions between the Zero Scenario and the Scenario G (year 2012) during the day-time (6am – 10pm)

Assessment of effects of implementing specific noise reducing measures is based on identification of changes in distribution of transport performances on the affected road network and of resulting economic effects. Changes in distribution of transport load were analysed by mathematical calculations of the traffic model of the city and subsequently of the Czech Republic and of European road network. The scope of the road network used for measure evaluation is presented in the following figure.

C1.3 Building the Business-as-Usual Scenario

The BaU scenario is based on continuously updated traffic model that serves, together with the derived noise emission model, as groundwork for evaluation of proposed scenarios. The BaU scenario was developed with the prognosis for the year 2020, in accordance with the Master Plan of Ústí nad Labem, existing modal split, mobility patterns, car ownership, car use, rate between fuel prices and transit prices. Expected changes in volumes, numbers, prices and transport relationships foreseen in the year 2020 were calculated for the whole evaluation period.

City:Ústí nad LabemProject:ArchimedesMeasure number:28 + 67

C2 Measure results

For measure evaluation, only variants E and F were calculated, compared and assessed in relation to the Zero variant. The reasons for this are the following:

• The first four scenarios (variant A, B, C and D) represent operation of specific bypasses of the city centre. The variant E considers implementation of all these bypasses constituting all together a city ring road, the most optimal solution resulting from the four proposals, minimising negative effects of traffic on sensitive parts in the city. Thus, within the variant E, all partial variants A, B, C and D are hidden and they separately represent individual steps required for implementation of the E variant.

• The scenario G (exclusion of vehicles over 3.5 tons from the city) is a hypothetical solution, which is in current situation not feasible in the city as transport services of the city would be not fulfilled and it cannot be substituted by other modes of transport, as revealed within the measure 67 Efficient Goods Distribution in Ústí nad Labem (please see the document T67.1 Noise reduction in Ústí nad Labem). The proposed scenario was used to assess noise reduction reached by excluding fright traffic from individual city streets. In sensitive parts of the city, where noise reduction achieved by excluding freight traffic was significant, where such solution was mostly required and where there existed suitable alternative routes, the solutions was recommended for implementation in the city. Based on the results of the noise model, specific solutions were proposed for specific streets or their sections and the solutions were included in the SUTP of Ústí nad Labem. Flat application of the scenario G on the city is not recommended and thus it was not evaluated.

C2.1 Economy

2a – Operation costs

Changes of transport load were calculated by the traffic model based on statistics of daily transport performances on individual roads in the city. To quantify economic costs of vehicle operation, it is necessary to distinguish these performances according to vehicle categories.

To calculate economic effects for operation costs of users, the evaluation methodology for economic efficiency of investments of the Directorate of Roads and Highways of the Czech Republic was used. Values were derived from the transport economic model HDM-4 and input data were calibrated for the Czech Republic. For each vehicle category, economic costs were quantified according to their operation costs per 1vehkm. Data on operation costs of freight vehicles were obtained from the Association of Freighters and from information on compensations for using personal vehicles according to the Law 119/92 Coll., as amended.

The operation costs of motorcycles (**M**) are set proportionally to personal vehicles (**PV**), the operation costs of buses (**B**) are considered to be at the same value as heavy freight vehicles (**HF**). Values for light freight vehicles (**LF**), as well as personal and heavy freight vehicles, were derived from the methodology HMD-4. All the values are given as economic prices, i.e. without taxes. The exchange rate for CZK/EUR was estimated as 26CZK/1EUR.

PV	3,90 CZK/vehkm	0,15 EUR/vehkm
LF	10,95 CZK/vehkm	0,42 EUR/vehkm
HF	17,43 CZK/vehkm	0,67 EUR/vehkm
В	17,43 CZK/vehkm	0,67 EUR/vehkm
Μ	1,95 CZK/vehkm	0,08 EUR/vehkm

Based on identified daily traffic performances and operation costs of individual vehicle categories, daily "social" costs were calculated for vehicle operation on the evaluated road network for 0 variant, E variant and F variant.

Operation costs of users are considered to cover also savings/losses in fuel consumption. It was not feasible to determine the average consumption of the entire vehicle fleet in the city in the future scenario (based on differences in prospective fleet composition, technical level, engine efficiency, etc.). Therefore, the changes in consumption were considered in the total operating costs of users (based on constant prices according to HDM-4).

City: Ústí nad Labem Project: Archimedes

Measure number: 28 + 67

Table 1 – Calculations for "0 variant"

DRY	DAILY TRANSPORT PERFORMANCE [VEHKM]		OPERATION COSTS		DAILY OPERATION COSTS						
ATEGO						201	1	20	13	20)42
VEH. C/	2011 2013	2042	CZK/vehkm	EUR/vehkm	Price [CZK]	Price [EUR]	Price [CZK]	Price [EUR]	Price [CZK]	Price [EUR]	
PV	1 361 848	1 471 474	1 877 744	3,90	0,15	5311208	204277	5738749	220721	7323201	281662
LF	106 720	113 560	137 706	10,95	0,42	1168582	44822	1243486	47695	1507876	57836
HF	159 208	201 684	314 876	17,43	0,67	2774993	106669	3515351	135128	5488286	210967
		TO	TAL / YEAR	3 377 995 655	129 855 614	3 831 618 818	147 293 815	5 226 567 524	200 919 629		

Table 2 – Calculations for "E variant"

JRY	DAILY TRANSPORT PERFORMANCE [VEHKM]		OPERATION COSTS		DAILY OPERATION COSTS						
ATEGO			2042			201	1	20	13	20	042
VEH. C∕	2011 2013	2013		CZK/vehkm	EUR/vehkm	Price [CZK]	Price [EUR]	Price [CZK]	Price [EUR]	Price [CZK]	Price [EUR]
PV	1 361 848	1 492 409	1 899 263	3,90	0,15	5311208	204277	5820395	223861	7407127	284890
LF	106 720	115 009	138 188	10,95	0,42	1168582	44822	1259354	48304	1513158	58039
HF	159 208	202 505	310 238	17,43	0,67	2774993	106669	3529668	135679	5407457	207860
· · · ·		TO	FAL / YEAR	3 377 995 655	129 855 614	3 872 436 920	148 863 016	5 229 625 914	201 037 707		

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

Table 3 - Calculations for "F variant"

JRY	DAILY TRANSPORT PERFORMANCE [VEHKM]		MANCE OPERATION COSTS		DAILY OPERATION COSTS						
ATEGO					EUR/vehkm	201	1	20	13	20)42
VEH. C∕	2011 2013	2013	2042	CZK/vehkm		Price [CZK]	Price [EUR]	Price [CZK]	Price [EUR]	Price [CZK]	Price [EUR]
PV	1 341 265	1 474 124	1 865 298	3,90	0,15	5230933	201190	5749082	221119	7274662	279795
LF	104 903	113 897	137 199	10,95	0,42	1148686	44059	1247172	47837	1502330	57624
HF	158 342	202 220	314 791	17,43	0,67	2759906	106089	3524687	135487	5486808	210910
		TO	FAL / YEAR	3 335 926 371	128 238 451	3 840 143 248	147 621 461	5 206 287 070	200 139 837		

For the operation costs, diversion of results in both directions may occur after the measure implementation (i.e. reduction of costs or increase of costs). Increase of costs can be expected in case of extending the trip in order to avoid entering certain streets with paid access. On the contrary, reduction of costs can be achieved if, for example, new infrastructure would be implemented shortening the distance and/or travel time.

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

2 b – Capital costs

In the Zero variant, no investment costs are expected because no noise reducing measures are implemented.

The E variant, on the contrary, requires construction of new road network bypassing sensitive zones of the city and thus reducing negative impact of traffic noise. Price Normative for Construction of Roads published by the Ministry of Transport of the Czech Republic in 2008 was used as the basis for determination of the investment costs. The length of the road network was based on the proposals of bypasses described in the document of the task 11.3.6 Noise Reduction.

Table 4 – Calculations for the "E variant"

	Length	Price/1km	Price	Price
	[km]	[CZK]	[CZK]	[EUR]
Terrain road section (4 lanes, divided directions)	4	201 mil.	804 mil.	30,9 mil.
Bridges (4 lanes, divided directions)	2,2	970 mil.	2 134 mil.	82 mil.
Tunnels (3 lanes, directions not divided)	13	1 500 mil.	19 500 mil.	750 mil.
ΤΟΤΑΙ	22 438 mil.	862,9 mil		

In the variant F, the study deals with the possibility of noise reduction as a result of implementing traffic calming restrictions in the city. It is evaluated by a macroscopic model of the city considering flat speed reduction by 10% in the city. Application of individual speed reducing tools, such as road signs, speed humps, speed measuring radars, etc., is not specifically addressed. This is the subject of further analyses by relevant microscopic studies. Therefore, costs for applying traffic calming restrictions was not enumerated and for calculation of investment costs, expert knowledge of transport practitioners in the city was used, based on knowledge of budget allocated on average into local transport infrastructure in the city and the usual prices of road signs and traffic calming elements in the Czech Republic (for both material and work).

Expert estimate for capitals costs of the variant F: 60 mil. CZK / 2,3 mil €

(Investment costs of the variant F are estimated based on experiences with traffic calming in the city)

2c – Maintenance costs

For calculation of operation costs and costs for maintenance of road infrastructure, the standard methodology for calculation of economic efficiency in the Czech Republic HDM-4 was used.

Roads	339 000 CZK/km	13 039 €/km
Local roads	486 000 CZK/km	18 692 €/km
Highways	1 230 000 CZK/km	47 308 €/km

The length of the road network was calculated by a computer traffic model.

City: Usti nad Labem Project: Archimedes Measure number: 28	City:	Ústí nad Labem	Project:	Archimedes	Measure number:	28 +
---	-------	----------------	----------	------------	-----------------	------

Table 5 – Calculations for the "divided directions" variant

	Length	Maintenance costs	Maintenance costs
	[km]	[CZK]	[EUR]
Roads of the I, II, III class	100,6	34103400	1311723,4
Local roads	227,8	110710800	4258037,6
Highways	18,0	22140000	851544
TOTAL / YEAR:		166 954 200	6 421 305
TOTAL (2011 – 2042)	:	5 342 534 400	205 481 760

Table 6 - Calculations for "E variant"

	Length [km]	Maintenance price [CZK]	Maintenance price [EUR]						
(Ce	(Construction period: 2011 - 2012)								
Roads of the I, II, III class	100,6	34103400	1311723,4						
Local roads	227,8	110710800	4258037,6						
Highways	18,0	22140000	851544						
TOTAL / YEAR:		166 954 200	6 421 305						
TOTAL (2011 – 2012):		333 908 400	12 842 610						
(0	Operation period: 2	013 - 2042)							
Roads of the I, II, III class	100,1	33933900	1305203,9						
Local roads	230,9	112217400	4315982,8						
Highways	37,2	45756000	1759857,6						
TOTAL/year:	191 907 300	7 381 044							
TOTAL (2013 – 2042):	5 757 219 000	221 431 320							
TOTAL (2011 – 2042):	6 091 127 400	234 273 930							

Table 7 - Calculations for "F variant"

	Length [km]	Maintenance price [CZK]	Maintenance price [EUR]
Roads of the I, II, III class	100,6	34103400	1311723,4
Local roads	227,8	110710800	4258037,6
Highways	18	22140000	851544
TOTAL / YEAR:		166 954 200	6 421 305
TOTAL (2011 – 2042	2):	5 342 534 400	205 481 760

The following table present comparison of values of economic indicators between the Zero variation (B-a-U) and the variant E. The comparison was based on results of the CBA, where the E variant appeared to be economically the most efficient and profitable solution. The variant F resulted as economically unprofitable scenario.

City:Ústí nad LabemProject:ArchimedesMeasure number:28 + 67

INDICATOR	Before (2011)	BaU (2042)	After (E variant) (2042)	Difference: After - Before	Difference: After - BaU
2a – Operation costs	129 855 614 €/day	200 919 629 €/day	201 037 707 €/day	+54,73%	+0,06%
2b – Capital Costs	0€	0€	862,9 mil. €	862,9 mil. €	862,9 mil. €
2c – Maintenance Costs	6 421 305 €/year	6 421 305 €/year	7 381 044 €/year	0,00%	+14,95%

C2.2 Energy

No indicators.

C2.3 Environment

Noise Impact

The number of population affected by noise from traffic was determined from traffic model. The outputs were length intervals of road sections with specific noise levels (e.g. 35,564 km of roads are during a day loaded with 50 to 54 dB). The number of population affected by this noise is calculated according to the average density of population (292 persons/km²), in conditions of 8/24 night-time traffic and 16/24 of day-time traffic. The results show proportion of population exposed to noise levels above 60 dB compared to the total population of Ústí nad Labem, which was 95 003 of people on 26^{th} February 2011.

Table 9 – Noise impact #	for "0 variant"	(2011 - 2042)
--------------------------	-----------------	---------------

NOIS	NOISE LEVEL [dB]		Road lengthDens. populDay time 6am - 10pmNight time 10pm - 6am 		Density of population [per 1km]	Number of affected residents	Amount of residents affected by noise >60 dB
50	-	54	35,564	46,007	292	11 399,61	-
55	-	59	40,589	52,355	292	12 995,47	-
60	-	64	50,817	18,853	292	11 725,83	
65	-	69	45,73	9,053	292	9 781,95	
70	-	74	2,747	2,923	292	819,14	24648,79
75	-	79	11,929		292	2 321,87	
	>	79			292	0,00	
		Total	25,95%				

City:	Ústí nad Labem	Project:	Archimedes	Measure number:	28 + 67
-------	----------------	----------	------------	-----------------	---------

NOISE LEVEL [dB]		EVEI	Road length		Density of	Number of affected	A mount of residents
		3]	Day time 6am - 10pm	ay time Night time ^{pop} n - 10pm 10pm - 6am [per		residents	affected by noise >60 dB
			[km]	[km]			
50	-	54	42,283	51,202	286	12 961,86	-
55	-	59	43,078	62,428	286	14 185,42	-
60	-	64	57,54	12,107	286	12 142,63	
65	-	69	34,585	11,294	286	7 681,95	
70	-	74	13,687	0,682	286	2 678,53	23671,86
75	-	79	6,121		286	1 168,75	
	>	79			286	0,00	
		Total _]	24,92%				

Table 10 – Noise impact for "E variant" (2013 - 2042)

Table 11 – Noise impact for "F variant" (2011 - 2042)

NOISE LEVEL [dB]		Road Day time 6am - 10pm [km]	length Night time 10pm – 6am [km]	Density of population [per 1km]	Number of affected residents	Amount of residents affected by noise >60 dB	
50	-	54	38,484	53,442	292	12 691,54	-
55	-	59	41,352	51,107	292	13 022,52	-
60	-	64	59,546	8,361	292	12 403,76	
65	-	69	33,284	8,943	292	7 348,75	
70	-	74	0,729	3,033	292	437,07	22511,44
75	-	79	11,929		292	2 321,87	
	>	79			292	0,00	
		23,70%					

Noise level

Noise burden exceeding the standard level was calculated by the traffic model. The standard noise limits for road traffic are stated by the Law 258/2000 Coll., on Protection of public health, paragraphs §30-34, and further specified in detail in the Government regulation 148/2006 Coll., on Protection of health from adverse effects of noise and vibrations. The existing limits of 70dB for day-time period and 60dB for night-time period were used for the calculations. Due to the fact, that for the period 2011-2042 it is not possible to exactly predict development of transport, technical level and emitted noise, simplification was made by using the annual constant for noise burden. It was assumed that in the future, the gradually renewed vehicle fleet will produce less noise but the traffic intensity will increase.

		0 VAR	IANT	E VA	RIANT	F VARIANT			
			Road	Road length		Road length		Road length	
N	OISE LEV	VEL	Day	Night	Day	Night	Day	Night	
[dB]		6am - 10pm [km]	10pm - 6am [km]	6am - 10pm [km]	10pm – 6am [km]	6am - 10pm [km]	10pm - 6am [km]		
50	-	54	35,564	46,007	42,283	51,202	38,484	53,442	
55	-	59	40,589	52,355	43,078	62,428	41,352	51,107	
60	-	64	50,817	18,853	57,54	12,107	59,546	8,361	
65	-	69	45,73	9,053	34,585	11,294	33,284	8,943	
70	-	74	2,747	2,923	13,687	0,682	0,729	3,033	
75	-	79	11,929		6,121		11,929		
	>	79							
Length of the road section with noise level over the limit [km]		14,676	30,829	19,808	24,083	12,658	20,337		
Difference (E-0, F-0) [km]				5,132	-6,746	-2,018	-10,492		
Difference (E-0, F-0) [%]		F-0) [%]			34,97	-21,88	-13,75	-34,03	
			> 70 dB	> 60 dB	> 70 dB	> 60 dB	> 70 dB	> 60 dB	

 Table 12 - Noise burden exceeding the acceptable limit

Emissions:

Quantity of air pollutants caused by traffic was determined by the traffic model. Data on emissions were identified for evaluated variants Zero, E and F in relevant years. However, CO_2 emissions and particulates could not be calculated by the existing traffic model, because the current version used by the city does not feature such application.

		TRAFFIC POLLUTANTS					
		NOx	SO ₂	СО	HC		
Variant	Year	[g/day]	[g/day]	[kg/day]	[g/day]		
	2011	2 171 978	190 359	1 708	523 771		
0	2013	4 211 806	355 537	2 486	1 052 508		
	2042	4 449 986	371 350	2 733	894 951		
	2011	2 171 978	190 359	1 708	523 771		
Е	2013	4 348 482	362 838	2 460	1 045 727		
	2042	4 430 978	367 154	2 658	876 120		
F	2011	2 119 475	189 857	1 801	546 250		
	2013	4 180 842	358 979	2 702	1 101 881		
	2042	4 222 459	359 103	2 866	901 752		

Table 13 – Quantity of traffic pollutants

INDICATOR	Before (2011)	BaU (2042)	After (E variant) (2042)	Difference: After - Before	Difference: After - BaU	
Noise impact	25,95%	25,95%	24,92%	- 1,03 %	- 1,03 %	
Noise level (day)	14,676 km	14,676 km	19,808 km	5,132 km (+34,97%)	5,132 km (+34,97%)	
Noise level (night)	30,829 km	30,829 km	24,083 km	-6,746 km (-21,88%)	-6,746 km (-21,88%)	
No. 8 – CO ₂ emissions			Not rated			
No. 9 - CO emissions	1708 g/day	2733 g/day	2658 g/day	950 g/day (+55,62%)	-75g/day (-2,74%)	
No. 10 – NO _x emission	2 171 978 g/day	4 449 986 g/day	4 430 978 g/day	2 259 000 (+10,4%)	-19008 (-0,43%)	
No. 11 – Particulate emissions	Not rated					

 Table 14 – Results in environment indicators

Ústí nad Labem

City:

C2.4 Transport

The transport performance of goods vehicles in the city was established by the traffic model. It was presumed that the supply vehicles are of a light freight category (LF) or a heavy freight category (HF).

Table 15 - Daily performance of goods vehicles

	ategory	Daily transport performance [vehkm/day]			
	Vehicle c	2011	2013	2042	
	LF	106 720	113 560	137 706	
0 VARIANT	HF	159 208	201 684	314 876	
	Total:	265 928	315 244	452 581	
	LF	106 720	115 009	138 188	
E VARIANT	HF	159 208	202 505	310 238	
	Total:	265 928	317 515	448 426	
	LF	104 903	113 897	137 199	
F VARIANT	HF	158 342	202 220	314 791	
	Total:	263 245	316 117	451 990	

 Table 16 – Results in transport indicators

INDICATOR	Before	BaU	After (E variant)	Difference:	Difference:
	(2011)	(2042)	(2042)	After - Before	After - BaU
No. 25 – Goods vehicles moving in demo areas	265 928 km/day	452 581 km/day	448 426 km/day	+68,63%	-0,92%

C2.5 Society

No indicators

C2.6 Cost Benefit Analysis

The CBA follows standard economic procedures for the evaluation period of proposed scenarios, which differ in their costs and benefits. The rate of return was calculated to reveal efficiency of investments and regulations, and the amount of expected operation costs for users.

Criteria applicable for the CBA:

- **Operation costs** These costs are the key economic indicators influencing majority of the scenarios processed by the traffic model. Different distribution schemes of freight traffic in demo areas resulting from the restrictive measures introduced in the city cause variances in the generated costs.
- Number of people affected by noise Population benefiting from the measures introduced in individual scenarios was identified and benefits were quantified by available recommended values related to external costs from transport. Such variables include benefits for inhabitants exposed to lower noise burden, leading to potential economic benefits, such as higher work performance and other.
- Absolute changes in noise levels For more restrictive scenarios, results deliver significant improvements in lowering the total noise level in demo areas. Such changes were quantified in order to give an assumption of potential economic benefits.
- **Freight traffic trips** Beside noise reduction, one of the major objectives of the measure is to reduce the amount of total freight traffic trips in demo areas. Different scenarios assess these traffic volumes and deliver results that determine economic benefits, changes in operational costs compared to benefits for inhabitants, etc.

Given the nature of these measures, dealing rather with external costs and impacts of transport, the economic assessment includes beside the precise model quantifications also estimations of costs and benefits based on up-to-date available best practise values that have been recommended by official EU-level research exercises, such as the IMPACT study.

City: Ústí nad Labem Project: Archimedes Measure

Measure number: 28 + 67

Economic indicators of all do-nothing and pro-active scenarios are based on approved values recommended for CBA (in Euro) for the Czech Republic, based on the document CBA Recommendations for CIVITAS Evaluation, J. Piao and J. Preston. These values are preferably used instead of Czech values in order to keep consistency within the Archimedes project. In case a recommended value was not available, Czech values recommended by national government were utilised according to the methodology for evaluating efficiency of transport structures HDM-4. This methodology is commonly used by the Directorate of Roads and Highways of the Czech Republic (http://www.rsd.cz/technicke-predpisy/hdm-4).

The indicators involve the following figures:

- 1. Ten car categories;
- 2. General traffic growth for years 2005 to 2040 per three main categories;
- 3. Standard economical prices per car category;
- 4. Standard economical prices per car tyre;
- 5. Standard prices per fuel and oil;
- 6. Maintenance costs;
- 7. Salary for drivers;
- 8. Standard interest rates;
- 9. Value of time per car use;
- 10. Yearly fix expenses per car category;
- 11. Lifetime of car fleet;
- 12. Operating hours per year per category;
- 13. Operating kilometres per year per category;
- 14. Travel time price for passengers;
- 15. Average car occupancy per car;
- 16. Average car occupancy per bus;
- 17. Discount rate;
- 18. Average economical loss from accidents per accident type and road category;

Step one – appraisal case – do something, compared to do nothing, do minimum or BAU scenarios.

In this step, the active scenario was defined, involving a proposal of complex organisational arrangements leading the major traffic flow through less environmentally sensitive areas. The scenario proposes completion of the road infrastructure allowing transit traffic to bypass the densely populated areas.

Step two – determination of the project life from technical, market and economic criteria;

Expected project life is proposed to be 30 years, which is the usual project life in economic calculations, including PPP projects.

Step three – determination of the key impacts of the project;

Key impacts include decrease of noise level and optimisation of goods distribution within the city logistics, with the main benefit for residential areas. Measurable impact is noise level and traffic volume, especially in goods transport.

Step four – determination of the main parties affected by the project;

Affected parties involve city residents, road users, freight companies, public transport operator, and city as the investor and owner of the new infrastructure.

C2.6.1 Evaluation Period for CBA

Time period for the CBA was set to be 32 years (2011 - 2042) based on assumed construction time of 2 years required by the E variant and subsequent operation time of 30 years. The discount rate is 5,5 %.

C2.6.2 Method and Values for Monetisation

Values recommended for the CIVITAS ARCHIMEDES project were used for the calculations. In case required values were not available, standard values used in the Czech Republic were used instead. (Source of data is mentioned at relevant figures).

- Values are constant, derived from price levels of 2010
- Exchange rate was 26 CZK/EUR
- Values from 2002 were converted to values 2010 by following rules:
 - EUR of 2002 was converted to CZJ of 2002 by the exchange rate of 30,56 CZK/EUR
 - Estimated inflation between the years 2002 and 2010 was 21,12%
 - CZK 2010 were converted to EUR 2010 by the exchange rate 26 CZK/EUR (i.e. $€_{2010} = 1,42 \cdot €_{2002}$)

Inputs for the CBA were:

- Investment costs
- Costs for operation and maintenance of the road infrastructure
- Residual value
- Operation costs of users
- Costs caused by noise burden

C2.6.3 Life Time Costs and Benefits

Costs for implementation of the "0 variant":

Construction period: no

Total costs: 0 CZK / 0 €

Costs for implementation of the "E variant":

Construction period: two years (2011 – 2012)

Source: Price norms for road constructions, Ministry of Transport, Czech Republic 2008

Length of the road network results from the proposal of bypasses described in the task 11.3.6 Noise Reduction.

Table 17 – Capital cost in the evaluation period for the "E variant" (not discounted)

	Length	Price/1km	Price	Price
	[km]	[CZK]	[CZK]	[EUR]
Terrain road section (4 lanes, divided directions)	4	201 mil.	804 mil.	30,9 mil.
Bridges (4 lanes, divided directions)	2,2	970 mil.	2 134 mil.	82 mil.
Tunnels (3 lanes, directions not divided)	13	1 500 mil.	19 500 mil.	750 mil.
ΤΟΤΑΙ	22 438 mil.	862,9 mil		

Costs for implementation of the "F variant":

Construction period: one year (2011) - Implementation of traffic signs and traffic calming elements.

Expert estimate: 60 mil. CZK / 2,3 mil €

Costs for maintenance and operation of the road infrastructure:

Costs for maintenance:

Roads of the I, II, III class	339 000 CZK / km	13 039 € / km
Local roads	486 000 CZK / km	18 692 € / km
Highways	1 230 000 CZK / km	47 308 € / km

Source: values were taken from the methodology of the transport economic model HDM-4.

Length of the road network was calculated by the traffic model of the city.

Costs for maintenance and operation of the road infrastructure for the "0 variant":

Construction period: no

Operation period: 2011 – 2042

Table 18 – Maintenance cost in the evaluation period for the "0 variant" (not discounted)

	Length [km]	Maintenance price [CZK]	Maintenance price [EUR]	
Roads of the I, II, III class	100,6	34103400	1311723,4	
Local roads	227,8	110710800	4258037,6	
Highways	18	22140000	851544	
TOTAL / YEAR:		166 954 200	6 421 305	
TOTAL (2011 – 2042	2):	5 342 534 400	205 481 760	

City:	Ústí nad Labem	Project:	Archimedes	Measure number:	28 + 67
-------	----------------	----------	------------	-----------------	---------

Costs for maintenance and operation of the road infrastructure for the "E variant":

Table 19 – Maintenance cost in the evaluation period for the E variant (not discounted)

	Length [km]	Maintenance price [CZK]	Maintenance price [EUR]	
(Ce	onstruction period:	2011 - 2012)		
Roads of the I, II, III class	100,6	34103400	1311723,4	
Local roads	227,8	110710800	4258037,6	
Highways	18,0	22140000	851544	
TOTAL / YEAR:		166 954 200	6 421 305	
TOTAL (2011 – 2012):	333 908 400	12 842 610		
(0	Operation period: 2	013 - 2042)		
Roads of the I, II, III class	100,1	33933900	1305203,9	
Local roads	230,9	112217400	4315982,8	
Highways	37,2	45756000	1759857,6	
TOTAL/year:	191 907 300	7 381 044		
TOTAL (2013 – 2042):	5 757 219 000	221 431 320		
TOTAL (2011 – 2042):		6 091 127 400	234 273 930	

Costs for maintenance and operation of the road infrastructure for the "F variant":

Construction period: 2011

Operation period: 2012 – 2042

Table 20 – Maintenance cost in the evaluation period for the "E variant" (not discounted)

	Length [km]	Maintenance price [CZK]	Maintenance price [EUR]	
Roads of the I, II, III class	100,6	34103400	1311723,4	
Local roads	227,8	110710800	4258037,6	
Highways	18	22140000	851544	
TOTAL / YEAR:		166 954 200	6 421 305	
TOTAL (2011 – 2042):	5 342 534 400	205 481 760	

City: Ústí nad Labem

Project: Archimedes

Residual value:

Source: based on the methodology of the transport economic model HDM-4.

$$S_{V} = \frac{\max\left\{0; W_{L} - \left(Y - y^{*}\right)\right\}}{W_{L}} \cdot UNDISCST$$

SV	=	Residual value of the structure
WL	=	Life time [years]
Y	=	Last year of analyses
у*	=	Year of launch / initiation of operation
UNDISCST	=	Undiscounted economic costs

Average life-time of transport structures is estimated to be 50 years. Life-time period of wearing layers is 25 years.

Residual value for the "0 variant":

Residual value: 0 CZK / 0 €

Residual value for the "E variant":

Residual value for the "F variant":

$$S_{V} = \frac{\max\{0; W_{L} - (Y - y^{*})\}}{W_{L}} \cdot UNDISCST = \frac{\max\{0; 25 - (2042 - 2013)\}}{25} \cdot 2300000 = 0 \in \mathbb{C}$$

Operation costs of users:

Transport performance was derived from the traffic model.

Prices for 2010 were taken from the methodology of the transport economic model HDM-4.

Table 21 – Operation cost in the evaluation period (not discounted)

PV	3,90 CZK/vehkm	0,15 EUR/vehkm
LF	10,95 CZK/vehkm	0,42 EUR/vehkm
HF	17,43 CZK/vehkm	0,67 EUR/vehkm
В	17,43 CZK/vehkm	0,67 EUR/vehkm
М	1,95 CZK/vehkm	0,08 EUR/vehkm

City: Ústí nad Labem

Project: Archimedes

Measure number: 28 + 67

Operation costs of users for the "O variant":

 Table 22 – Operation cost in the evaluation period (not discounted)

gory	Daily transport performance [vehkm] Operation of		Operatio	on costs	DAILY OPERATION COSTS						
le cate			2011		11	2013		2042			
Vehic	2011	2013	2042	CZK / vehkm	EUR / vehkm	price [CZK]	price [EUR]	price [CZK]	price [EUR]	price [CZK]	price [EUR]
PV	1 361 848	1 471 474	1 877 744	3,90	0,15	5311208	204277	5738749	220721	7323201	281662
LF	106 720	113 560	137 706	10,95	0,42	1168582	44822	1243486	47695	1507876	57836
HF	159 208	201 684	314 876	17,43	0,67	2774993	106669	3515351	135128	5488286	210967
1			TO	FAL / YEA	R	3 377 995 655	129 855 614	3 831 618 818	147 293 815	5 226 567 524	200 919 629

Operation costs of users for the "E variant":

 Table 23 – Operation cost in the evaluation period (not discounted)

gory	Daily transport performance		Operatio	on costs	DAILY OPERATION COSTS							
le cate		[vehkm]		Operation costs		2011		2013		2042		
Vehic	2011	2013	2042	CZK / vehkm	EUR / vehkm	price [CZK]	price [EUR]	price [CZK]	price [EUR]	price [CZK]	price [EUR]	
PV	1 361 848	1 492 409	1 899 263	3,90	0,15	5311208	204277	5820395	223861	7407127	284890	
LF	106 720	115 009	138 188	10,95	0,42	1168582	44822	1259354	48304	1513158	58039	
HF	159 208	202 505	310 238	17,43	0,67	2774993	106669	3529668	135679	5407457	207860	
TO			TAL / YEA	R	3 377 995 655	129 855 614	3 872 436 920	148 863 016	5 229 625 914	201 037 707		

City: Ústí nad Labem

Project: Archimedes

Measure number: 28 + 67

Operation costs of users for the "F variant":

 Table 24 – Operation cost in the evaluation period (not discounted)

gory	Daily tra	ansport perform	mance	Operation costs		DAILY OPERATION COSTS								
le cate		[vehkm]				2011		2013		2042				
Vehic	2011	2013	2042	CZK / vehkm	EUR / vehkm	price [CZK]	price [EUR]	price [CZK]	price [EUR]	price [CZK]	price [EUR]			
PV	1 341 265	1 474 124	1 865 298	3,90	0,15	5230933	201190	5749082	221119	7274662	279795			
LF	104 903	113 897	137 199	10,95	0,42	1148686	44059	1247172	47837	1502330	57624			
HF	158 342	202 220	314 791	17,43	0,67	2759906	106089	3524687	135487	5486808	210910			
T		TO	FAL / YEA	R	3 335 926 371	128 238 451	3 840 143 248	147 621 461	5 206 287 070	200 139 837				

Costs of traffic accidents:

Values for losses caused by traffic accidents were recommended for CIVTAS Archimedes project.

Table 25 – Savings from accident reductions in the evaluation period (not discounted) in the Czech Republic

	Fatality	Severe injury	Slight injury	Average injury	Damage only
$ \in_{2002} $ PPP, factor prices	932 000	125 200	9 100	67 150	
$ \in_{2010} $ PPP, conversion factor prices	1 323 440	177 784	12 922	95 353	6 346
		Recommended values	Derived value	HDM-4 value	

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

 Table 26 – Relative accident rate (source: values are taken from the methodology of the transport economic model HDM-4)

Relative accident rate [no. of accidents /100 mil. vehkm per year]	Fatalities	Injuries	Damage only
I class roads	1,75	25,52	139,8
II and II class roads	1,72	41,06	172,96
4-lane road without the middle belt	1,64	31,17	152,17
4-lane road with the middle belt	1,64	31,17	152,17
4-lane highways and speedways	0,52	7,01	73,99
6-lane highways and speedways	0,52	7,01	73,99
Through roads of II, III class and local roads	2	49,9	201,6

Costs of traffic accidents for the "0 variant":

ROAD	Trar	nsport performat [vehkm]	nce	Relative accident rate			Foreseen no. of Foreaccidents / year 2011			reseen no. of Foreseen no. of accidents / year 2013			Costs [ϵ_{2010} / year]					
CATEGORY	Day-time 2011	Day-time 2013	Day-time 2042	fatalities	injuries	damages	fatalities	injuries	damages	fatalities	injuries	damages	fatalities	injuries	damages	2011	2013	2042
Highways and speedways	146 852 368	177 897 530	256 969 348	0,52	7,01	73,99	1	10	109	1	12	132	1	18	190	2 681 750	3 248 683	4 692 656
I class roads	154 853 871	165 043 392	190 699 766	1,75	25,52	139,80	3	40	216	3	42	231	3	49	267	8 728 492	9302834,8	10748982
II and III class roads	120 522 021	129 085 808	175 638 836	1,72	41,06	172,96	2	49	208	2	53	223	3	72	304	8 784 989	9409213,1	12802517
Local roads	171 909 925	180 125 479	227 260 753	2,00	49,90	201,60	3	86	347	4	90	363	5	113	458	14 929 257	15642724	19736115
												ТОТ	TAL / YE	EAR		35 124 488	37 603 455	47 980 270

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

Costs of traffic accidents for the "E variant":

Table 28 – Savings from accident reductions in the evaluation period for the variant E (not discounted)

ROAD	Tra	nsport performat [vehkm]	nce	Relative accident rate			Foreseen no. of Fore accidents / year 2011 accider			eseen no. of ents / year 2013 Foreseen no. of accidents / year 2042			o. of r 2042	Costs [\mathfrak{E}_{2010} / year]				
CATEGORY	Day-time 2011	Day-time 2013	Day-time 2042	fatalities	injuries	damages	fatalities	injuries	damages	fatalities	injuries	damages	fatalities	injuries	damages	2011	2013	2042
Highways and speedways	146 852 368	269 223 021	360 035 350	0,52	7,01	73,99	1	10	109	1	19	199	2	25	266	2 681 750	4 916 427	6 574 799
I class roads	154 853 871	106 223 251	85 771 568	1,75	25,52	139,80	3	40	216	2	27	149	2	22	120	8 728 492	5987379,1	4834599,6
II and III class roads	120 522 021	108 694 757	97 372 641	1,72	41,06	172,96	2	49	208	2	45	188	2	40	168	8 784 989	7922886	7097603,9
Local roads	171 909 925	176 481 104	313 727 239	2,00	49,90	201,60	3	86	347	4	88	356	6	157	632	14 929 257	15326234	27245166
												ТОТ	TAL / Y	EAR		35 124 488	34 152 926	45 752 169

Costs of traffic accidents for the "F variant":

Table 29 – Savings from accident reductions in the evaluation period for the variant F (not discounted)

ROAD	Trar	nsport performat [vehkm]	nce	Relative accident rate			For accide	eseen no nts / yea	o. of r 2011	Fore accide	eseen no nts / yea	o. of r 2013	Foreseen no. of accidents / year 2042			Costs [€ ₂₀₁₀ / year]		
CATEGORY	Day-time 2011	Day-time 2013	Day-time 2042	fatalities	injuries	damages	fatalities	injuries	damages	fatalities	injuries	damages	fatalities	injuries	damages	2011	2013	2042
Highways and speedways	146 627 645	185 201 467	265 449 097	0,52	7,01	73,99	1	10	108	1	13	137	1	19	196	2 677 646	3 382 064	4 847 509
I class roads	150 611 656	160 455 620	184 364 458	1,75	25,52	139,80	3	38	211	3	41	224	3	47	258	8 489 376	9044240,4	10391886
II and III class roads	118 344 014	129 231 243	172 070 660	1,72	41,06	172,96	2	49	205	2	53	224	3	71	298	8 626 231	9419814,1	12542429
Local roads	170 062 788	178 549 299	223 925 932	2,00	49,90	201,60	3	85	343	4	89	360	4	112	451	14 768 845	15505843	19446508
													-					

Measure title: Noise Reduction + Efficient Goods E				oods Distribution in UNL				
Citv:	Ústí nad Labem	Proiect:	Archimedes	Measu	re number: 28 + 67			
Chyr		eje ett		meacu				
					ΤΟΤΑΙ / ΥΕΛΡ	24 562 008	27 251 061	47 228 221
					IUIAL/ IEAK	34 502 098	57 551 901	47 228 331

.

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

Time savings:

Costs of time savings in performed trips:

Table 30 – Time saving in the evaluation period for the variant F (not discounted)

CZECH REPUBLIC VALUES	PV	LF	HF
$ \in_{2002} $ PPP, factor prices	26,57	26,57	21,31
$ \in_{2010} $ PPP, conversion factor prices	37,73	37,73	30,26

Time savings for the "0 variant":

Table 31 – Time saving in the evaluation period for the 0 variant (not discounted)

VEHICLE	Y	ear savings [person-hou	urs]	Time price	Price $ \in_{2010} $ / year					
CATEGORY	2011	2013	2042	[€]	2011	2013	2042			
PV	16 468 751,73	17 794 451,23	22 707 446,81	37,73	621 356 121,65	671 373 968,08	856 738 344			
LF	813 850,06	866 016,54	1 050 149,51	37,73	30 706 074,45	32 674 284,45	39 621 511			
HF	10 021 246,40	12 694 878,44	19 819 677,05	30,26	303 244 920,39	384 149 560,70	599 747 392			
			TOTAL / Y	'EAR	955 307 116	1 088 197 813	1 496 107 246			

Time savings for the "E variant":

Table 32 – Time saving in the evaluation period for the variant E (not discounted)

VFHICI F	Y	ear savings [person-hou	ırs]	Time price	Price € ₂₀₁₀ / year					
CATEGORY	2011	2013	2042	[€]	2011	2013	2042			
PV	16 468 751,73	16 675 714,53	21 221 781,50	37,73	621 356 121,65	629 164 703,62	800 685 083			
LF	813 850,06	808 331,84	971 239,38	37,73	30 706 074,45	30 497 875,28	36 644 279			
HF	10 021 246,40	12 025 370,10	18 422 885,33	30,26	303 244 920,39	363 890 104,22	557 480 195			
			TOTAL / Y	'EAR	955 307 116	1 023 552 683	1 394 809 557			

Time savings for the "F variant":

 Table 33 – Time saving in the evaluation period for the variant F (not discounted)

VEHICLE CATEGORY	Y	ear savings [person-hou	urs]	Time price	Price € ₂₀₁₀ / year					
	2011	2013	2042	[€]	2011	2013	2042			
PV	17 667 119,21	19 417 132,86	24 569 675,36	37,73	666 569 807,53	732 596 772,58	926 999 110			
LF	864 183,10	938 276,71	1 130 238,39	37,73	32 605 109,82	35 400 617,13	42 643 216			
HF	10 482 285,63	13 386 967,11	20 839 219,59	30,26	317 196 059,57	405 092 302,18	630 598 953			
			TOTAL / Y	'EAR	1 016 370 977	1 173 089 692	1 600 241 279			

Costs of noise burden:

Table 34 – Values of noise costs recommended for CIVITAS evaluation for roads in the Czech Republic

	L _{den} dB(A)	(ϵ_{2002} PPP, factor prices, per year per person exposed)	(ϵ_{2010} PPP, conversion factor prices, per year per person exposed)
50	-	54	13,5	19,2
55	-	59	38,2	54,2
60	-	64	65,8	93,4
65	-	69	93	132,06
70	-	74	149	211,58
75	-	79	200	284
	>	79	232,5	330,15

Costs of noise burden for the "0 variant":

Table 35 – Noise cost in the evaluation period for the "0 variant" (not discounted)

		Road	l length				
Noise level dB(A)	Noise cost [€/person/year]	Day time 6am – 10pm [km]	Night time 10pm – 6am [km]	Density of population [person/km]	[€ ₂₀₁₀ /year]		
50 - 54	19,2	35,564	46,007	292	218872,506		
55 - 59	54,2	40,589	52,355	292	704354,335		
60 - 64	93,4	50,817	18,853	292	1095192,26		
65 - 69	132,06	45,73	9,053	292	1291804,6		
70 - 74	211,58	2,747	2,923	292	173314,636		
75 - 79	284	11,929		292	659410,219		
> 79	330,15			292	0		
			TOTAL / Y	EAR	4 142 948,56		

28 + 67

Costs of noise burden for the "E variant":

Construction period of city bypasses: two years, 2011 – 2012

Operation period: 2012 – 2042

Table 36 – Noise cost in the evaluation period for the "E variant" (not discounted)

	Noise level	l Noise cost	Road	length		Costo of action import		
Noise dB((A)	Noise cost [€/person/year]	Day time 6am – 10pm [km]	Night time 10pm – 6am [km]	Density of population [person/km]	[€ ₂₀₁₀ /year]		
50 -	- 54	19,2	42,283	51,202	286	248867,777		
55 -	- 59	54,2	43,078	62,428	286	768849,527		
60 -	- 64	93,4	57,54	12,107	286	1134121,59		
65 -	- 69	132,06	34,585	11,294	286	1014478,69		
70 -	- 74	211,58	13,687	0,682	286	566722,408		
75 -	- 79	284	6,121		286	331925,589		
>	> 79	330,15			286	0		
				TOTAL / Y	EAR	4 064 965,59		

Costs of noise burden for the "F variant":

Table 37 – Noise cost in the evaluation period for the "F variant" (not discounted)

		Road	l length			
Noise level Noise cost dB(A) [€/person/year]		Day time 6am – 10pm [km]	Night time 10pm – 6am [km]	Density of population [person/km]	[€ ₂₀₁₀ /year]	
50 - 54	19,2	38,484	53,442	292	243677,496	
55 - 59	54,2	41,352	51,107	292	705820,718	
60 - 64	93,4	59,546	8,361	292	1158511,2	
65 - 69	132,06	33,284	8,943	292	970476,031	
70 - 74	211,58	0,729	3,033	292	92474,2818	
75 - 79	284	11,929		292	659410,219	
> 79	330,15			292	0	
			TOTAL / Y	EAR	3 830 369,95	

C2.6.4 COMPARE THE LIFETIME COSTS AND BENEFITS

Initially, investment and operation costs were calculated for individual variants and processed into the Cost data entry page. Benefits in comparing the E and F variant with the Zero variant were assessed as positive for positive values and negative for negative values. (Table 38)

Foreseen benefits of each variant were calculated and processed into the Benefit data entry page. Results were assessed as positive or negative according to the value of each variant compare to the 0 variant (Table 39).

Finally, net present value was calculated (Calculation of net present values) with the following results:

- NPV (variant E) = 350 989 252 € BCR (variant E) = 1,51
- NPV (variant F) = -1 384 198 347 € BCR (variant F) = -600,83

For the CIVITAS evaluation, discount rate of 5,5 % was recommended for Ústí nad Labem (Table 40 a Table 41).

The discounted costs are presented in the following tables in two versions:

- Version I tables, in which the data were originally calculated and which contain more information
- Version II tables in the form defined by the template for MERTs, presenting summary and comparison of results for individual evaluated scenarios
Measure title: Noise Reduction + Efficient Goods Distribution in ÚNL

City: Ústí nad Labem Project: Archimedes Measure number: 28 + 67

Table 38 – Lifetime cost of the variants 0, E, F (discounted) – table format version I 12 13 10 11 14 2012 2013 2016 2017 2018 2019 2020 2021 2024 2011 2014 2015 2022 2023 2025 var 0 Capital cost var E 431 450 000 431 450 000 var F 2 300 000 6 421 305 var 0 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 Operating and var E 6 421 305 6 421 305 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 Maintenance var F 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 cost (€) 6 421 305 6 421 305 var 0 var E salvage value var F 6 421 305 6 421 var 0 6 421 305 437 871 305 437 871 305 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 var E 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 var F 8 721 305 Total (€) 431 450 000 431 450 000 959 739 Change E - 0 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 Changes F - 0 2 300 000 Changes 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 7 381 044 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 -362 420 000 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 7 381 044 7 381 0 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 6 421 305 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 -361 460 261 0 0 0 0 0 0 0 0

Noise Reduction + Efficient Goods Distribution in ÚNL

City: City Name

Project: Project name

,	Table 3	9 – Lifetime	e benefits o	f the varia	unts 0, E, H	f (discount	ed) – table	format v	ersion I								
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
		var 0 (€)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		var E (€)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		var F (€)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Revenue		Changes (€)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		var 0	129 855 614	138 574 714	147 293 815	149 142 981	150 992 147	152 841 313	154 690 479	156 539 645	158 388 811	160 237 977	162 087 143	163 936 309	165 785 475	167 634 641	169 483 807
	.	var E	129 855 614	139 359 315	148 863 016	150 662 143	152 461 271	154 260 398	156 059 525	157 858 653	159 657 780	161 456 907	163 256 034	165 055 162	166 854 289	168 653 416	170 452 543
	Operation	var F	128 238 451	137 929 956	147 621 461	149 432 439	151 243 418	153 054 396	154 865 375	156 676 353	158 487 331	160 298 310	162 109 288	163 920 267	165 731 245	167 542 224	169 353 202
	coast	Change E - 0	0	-784 601	-1 569 201	-1 519 163	-1 469 124	-1 419 085	-1 369 046	-1 319 008	-1 268 969	-1 218 930	-1 168 892	-1 118 853	-1 068 814	-1 018 775	-968 737
		Changes F - 0	1 617 163	644 758	-327 646	-289 458	-251 271	-213 083	-174 896	-136 708	-98 521	-60 333	-22 146	16 042	54 229	92 417	130 604
		var 0	35 124 488	36 363 971	37 603 455	37 961 276	38 319 097	38 676 918	39 034 739	39 392 561	39 750 382	40 108 203	40 466 024	40 823 845	41 181 667	41 539 488	41 897 309
	Aggidanta	var E	35 124 488	34 638 707	34 152 926	34 552 899	34 952 873	35 352 847	35 752 821	36 152 795	36 552 769	36 952 743	37 352 717	37 752 691	38 152 665	38 552 639	38 952 613
	Accidents	var F	34 562 098	35 957 030	37 351 961	37 692 526	38 033 090	38 373 655	38 714 219	39 054 784	39 395 348	39 735 913	40 076 477	40 417 042	40 757 606	41 098 171	41 438 735
	COSIS	Change E - 0	0	1 725 264	3 450 529	3 408 376	3 366 224	3 324 071	3 281 918	3 239 765	3 197 613	3 155 460	3 113 307	3 071 155	3 029 002	2 986 849	2 944 697
External		Changes F - 0	562 390	406 941	251 493	268 750	286 007	303 263	320 520	337 777	355 034	372 290	389 547	406 804	424 061	441 317	458 574
cost/benefit		var 0	955 307 116	1 021 752 465	1 088 197 813	1 102 263 656	1 116 329 498	1 130 395 341	1 144 461 183	1 158 527 026	1 172 592 868	1 186 658 711	1 200 724 553	1 214 790 396	1 228 856 238	1 242 922 081	1 256 987 923
		var E	955 307 116	989 429 900	1 023 552 683	1 036 354 644	1 049 156 605	1 061 958 567	1 074 760 528	1 087 562 489	1 100 364 450	1 113 166 411	1 125 968 372	1 138 770 334	1 151 572 295	1 164 374 256	1 177 176 217
	Time saving	var F	1 016 370 977	1 094 730 334	1 173 089 692	1 187 819 057	1 202 548 422	1 217 277 787	1 232 007 152	1 246 736 517	1 261 465 882	1 276 195 247	1 290 924 612	1 305 653 977	1 320 383 342	1 335 112 708	1 349 842 073
		Change E - 0	0	32 322 565	64 645 130	65 909 011	67 172 893	68 436 774	69 700 656	70 964 537	72 228 418	73 492 300	74 756 181	76 020 062	77 283 944	78 547 825	79 811 706
		Changes F - 0	-61 063 860	-72 977 870	-84 891 879	-85 555 401	-86 218 924	-86 882 446	-87 545 969	-88 209 491	-88 873 014	-89 536 537	-90 200 059	-90 863 582	-91 527 104	-92 190 627	-92 854 149
	Noise cost	var 0	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949
		var E	4 142 949	4 142 949	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966
		var F	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370
		Change E - 0	0	0	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983
		Changes F - 0	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579
Changes in	total benefit (€	E) E - 0	0	33 263 229	66 604 441	67 876 208	69 147 975	70 419 743	71 691 510	72 963 278	74 235 045	75 506 812	76 778 580	78 050 347	79 322 115	80 593 882	81 865 649
Changes in	total benefit (€	E) F - 0	-58 571 729	-71 613 591	-84 655 453	-85 263 531	-85 871 609	-86 479 687	-87 087 766	-87 695 844	-88 303 922	-88 912 001	-89 520 079	-90 128 157	-90 736 236	-91 344 314	-91 952 392

		(City: City	y Name		Proj	ect: Pro	ject name		Measi	ure number	r: x.y				
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
171 332 973	173 182 139	175 031 305	176 880 471	178 729 637	180 578 803	182 427 969	184 277 135	186 126 301	187 975 467	189 824 633	191 673 799	193 522 965	195 372 131	197 221 297	199 070 463	200 919 629
172 251 671	174 050 798	175 849 925	177 649 053	179 448 180	181 247 307	183 046 434	184 845 562	186 644 689	188 443 816	190 242 943	192 042 071	193 841 198	195 640 325	197 439 453	199 238 580	201 037 707
171 164 181	172 975 159	174 786 138	176 597 116	178 408 095	180 219 073	182 030 052	183 841 030	185 652 009	187 462 987	189 273 966	191 084 944	192 895 923	194 706 901	196 517 880	198 328 858	200 139 837
-918 698	-868 059	-818 620	-/68 582	-/18 543	-668 504	-618 400	-568 427	-518 388	-468 349	-418 311	-368 272	-318 233	-268 194	-218 156	-168 117	-118 078
168 /92	206 979	245 167	283 355	321 542	359 730	397 917	436 105	4/4 292	512 480	15 000 040	228 882	627 042	665 230	703 417	/41 605	179 792
42 255 130	42 612 952	42 970 773	43 328 594	43 686 415	44 044 236	44 402 058	44 /59 8/9	45 117 700	45 475 521	45 833 343	46 191 164	46 548 985	46 906 806	4/ 204 02/	47 622 449	47 980 270
39 352 500	39752500	40 152 534	40 552 506	40 902 402	41 302 400	41 752 430	42 152 404	42 552 576	42 902 302	43 332 320	43 732 300	44 102 214	44 332 247	44 952 221	40 302 190	45 7 52 109
2 902 544	2 860 301	2 818 238	2 776 086	2 733 033	2 691 780	2 649 628	2 607 475	2 565 322	2 523 170	2 /81 017	2 /38 86/	2 396 711	2 354 559	2 312 406	2 270 253	2 228 101
475 831	493.088	510 344	527 601	544 858	562 114	570 371	596 628	613 885	631 141	6/8 308	665 655	682 012	700 168	717 /25	734 682	751 030
1 271 053 766	1 285 119 608	1 299 185 451	1 313 251 293	1 327 317 136	1 341 382 978	1 355 448 821	1 369 514 663	1 383 580 506	1 397 646 348	1 411 712 191	1 425 778 033	1 439 843 876	1 453 909 718	1 467 975 561	1 482 041 403	1 496 107 246
1 189 978 178	1 202 780 139	1 215 582 100	1 228 384 062	1 241 186 023	1 253 987 984	1 266 789 945	1 279 591 906	1 292 393 867	1 305 195 829	1 317 997 790	1 330 799 751	1 343 601 712	1 356 403 673	1 369 205 634	1 382 007 595	1 394 809 557
1 364 571 438	1 379 300 803	1 394 030 168	1 408 759 533	1 423 488 898	1 438 218 263	1 452 947 628	1 467 676 993	1 482 406 358	1 497 135 723	1 511 865 088	1 526 594 453	1 541 323 818	1 556 053 183	1 570 782 548	1 585 511 913	1 600 241 279
81 075 588	82 339 469	83 603 350	84 867 232	86 131 113	87 394 994	88 658 876	89 922 757	91 186 639	92 450 520	93 714 401	94 978 283	96 242 164	97 506 045	98 769 927	100 033 808	101 297 689
-93 517 672	-94 181 194	-94 844 717	-95 508 239	-96 171 762	-96 835 285	-97 498 807	-98 162 330	-98 825 852	-99 489 375	-100 152 897	-100 816 420	-101 479 942	-102 143 465	-102 806 988	-103 470 510	-104 134 033
4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949	4 142 949
4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966	4 064 966
3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370	3 830 370
77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983	77 983
312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579	312 579
83 137 417	84 409 184	85 680 951	86 952 719	88 224 486	89 496 254	90 768 021	92 039 788	93 311 556	94 583 323	95 855 090	97 126 858	98 398 625	99 670 393	100 942 160	102 213 927	103 485 695
-92 560 470	-93 168 549	-93 776 627	-94 384 705	-94 992 784	-95 600 862	-96 208 940	-96 817 019	-97 425 097	-98 033 175	-98 641 253	-99 249 332	-99 857 410	-100 465 488	-101 073 567	-101 681 645	-102 289 723

2: Noise Reduction + Efficient Goods Distribution in ÚNL

Noise Reduction + Efficient Goods Distribution in ÚNL

City: City Name

Project: Project name

	Capital cost	Operation	Maintenance	Other cost (salvage value)	Savings from accident reductions	Savings from Journey time savings	Savings from reductions of environmenta l emissions	Operation costs of users	Total	Total	Cumulated
		cost	cost						cost	Benefit	cost
Year 1	431 450 000		6 421 305	0	35 124 488	955 307 116	4 142 949	129 855 614	437 871 305	1 124 430 167	686 558 862
Year 2	431 450 000		6 421 305	0	34 638 707	989 429 900	4 142 949	139 359 315	437 871 305	1 167 570 871	729 699 566
Year 3	0		7 381 044	0	34 152 926	1 023 552 683	4 064 966	148 863 016	7 381 044	1 210 633 591	1 203 252 547
Year 4	0		7 381 044	0	34 552 899	1 036 354 644	4 064 966	150 662 143	7 381 044	1 225 634 652	1 218 253 608
Year 5	0		7 381 044	0	34 952 873	1 049 156 605	4 064 966	152 461 271	7 381 044	1 240 635 715	1 233 254 671
Year 6	0		7 381 044	0	35 352 847	1 061 958 567	4 064 966	154 260 398	7 381 044	1 255 636 778	1 248 255 734
Year 7	0		7 381 044	0	35 752 821	1 074 760 528	4 064 966	156 059 525	7 381 044	1 270 637 840	1 263 256 796
Year 8	0		7 381 044	0	36 152 795	1 087 562 489	4 064 966	157 858 653	7 381 044	1 285 638 903	1 278 257 859
Year 9	0		7 381 044	0	36 552 769	1 100 364 450	4 064 966	159 657 780	7 381 044	1 300 639 965	1 293 258 921
Year 10	0		7 381 044	0	36 952 743	1 113 166 411	4 064 966	161 456 907	7 381 044	1 315 641 027	1 308 259 983
Year 11	0		7 381 044	0	37 352 717	1 125 968 372	4 064 966	163 256 034	7 381 044	1 330 642 089	1 323 261 045
Year 12	0		7 381 044	0	37 752 691	1 138 770 334	4 064 966	165 055 162	7 381 044	1 345 643 153	1 338 262 109
Year 13	0		7 381 044	0	38 152 665	1 151 572 295	4 064 966	166 854 289	7 381 044	1 360 644 215	1 353 263 171
Year 14	0		7 381 044	0	38 552 639	1 164 374 256	4 064 966	168 653 416	7 381 044	1 375 645 277	1 368 264 233
Year 15	0		7 381 044	0	38 952 613	1 177 176 217	4 064 966	170 452 543	7 381 044	1 390 646 339	1 383 265 295
Year 16	0		7 381 044	0	39 352 586	1 189 978 178	4 064 966	172 251 671	7 381 044	1 405 647 401	1 398 266 357
Year 17	0		7 381 044	0	39 752 560	1 202 780 139	4 064 966	174 050 798	7 381 044	1 420 648 463	1 413 267 419
Year 18	0		7 381 044	0	40 152 534	1 215 582 100	4 064 966	175 849 925	7 381 044	1 435 649 525	1 428 268 481
Year 19	0		7 381 044	0	40 552 508	1 228 384 062	4 064 966	177 649 053	7 381 044	1 450 650 589	1 443 269 545

		City: City Name		Project:	Project name	٨	leasure number.	: x.y		
Year 20	0	7 381 044	0	40 952 482	1 241 186 023	4 064 966	179 448 180	7 381 044	1 465 651 651	1 458 270 607
Year 21	0	7 381 044	0	41 352 456	1 253 987 984	4 064 966	181 247 307	7 381 044	1 480 652 713	1 473 271 669
Year 22	0	7 381 044	0	41 752 430	1 266 789 945	4 064 966	183 046 434	7 381 044	1 495 653 775	1 488 272 731
Year 23	0	7 381 044	0	42 152 404	1 279 591 906	4 064 966	184 845 562	7 381 044	1 510 654 838	1 503 273 794
Year 24	0	7 381 044	0	42 552 378	1 292 393 867	4 064 966	186 644 689	7 381 044	1 525 655 900	1 518 274 856
Year 25	0	7 381 044	0	42 952 352	1 305 195 829	4 064 966	188 443 816	7 381 044	1 540 656 963	1 533 275 919
Year 26	0	7 381 044	0	43 352 326	1 317 997 790	4 064 966	190 242 943	7 381 044	1 555 658 025	1 548 276 981
Year 27	0	7 381 044	0	43 752 300	1 330 799 751	4 064 966	192 042 071	7 381 044	1 570 659 088	1 563 278 044
Year 28	0	7 381 044	0	44 152 274	1 343 601 712	4 064 966	193 841 198	7 381 044	1 585 660 150	1 578 279 106
Year 29	0	7 381 044	0	44 552 247	1 356 403 673	4 064 966	195 640 325	7 381 044	1 600 661 211	1 593 280 167
Year 30	0	7 381 044	0	44 952 221	1 369 205 634	4 064 966	197 439 453	7 381 044	1 615 662 274	1 608 281 230
Year 31	0	7 381 044	0	45 352 195	1 382 007 595	4 064 966	199 238 580	7 381 044	1 630 663 336	1 623 282 292
Year 32	0	7 381 044	-362 420 000	45 752 169	1 394 809 557	4 064 966	201 037 707	-355 038 956	1 645 664 399	2 000 703 355
Total	862 900 000	234 273 930	-362 420 000	1 268 339 615	38 220 170 612	130 234 878	5 517 725 778	734 753 930	45 136 470 883	44 401 716 953

Noise Reduction + Efficient Goods Distribution in ÚNL

Noise Reduction + Efficient Goods Distribution in ÚNL

City: City Name

Project: Project name

	Capital cost	Operation	Maintenance	Other co (salvage value)	ost	Savings from accident reductions	Savings from Journey time savings	Savings from reductions of environmental emissions	Operation costs of users	Total	Total	Cumulated
		cost	cost							cost	Benefit	cost
Year 1	2 300 000		6 421 305		0	34 562 098	1 016 370 977	3 830 370	128 238 451	8 721 305	1 183 001 896	1 174 280 591
Year 2	0		6 421 305		0	35 957 030	1 094 730 334	3 830 370	137 929 956	6 421 305	1 272 447 690	1 266 026 385
Year 3	0		6 421 305		0	37 351 961	1 173 089 692	3 830 370	147 621 461	6 421 305	1 361 893 484	1 355 472 179
Year 4	0		6 421 305		0	37 692 526	1 187 819 057	3 830 370	149 432 439	6 421 305	1 378 774 392	1 372 353 087
Year 5	0		6 421 305		0	38 033 090	1 202 548 422	3 830 370	151 243 418	6 421 305	1 395 655 300	1 389 233 995
Year 6	0		6 421 305		0	38 373 655	1 217 277 787	3 830 370	153 054 396	6 421 305	1 412 536 208	1 406 114 903
Year 7	0		6 421 305		0	38 714 219	1 232 007 152	3 830 370	154 865 375	6 421 305	1 429 417 116	1 422 995 811
Year 8	0		6 421 305		0	39 054 784	1 246 736 517	3 830 370	156 676 353	6 421 305	1 446 298 024	1 439 876 719
Year 9	0		6 421 305		0	39 395 348	1 261 465 882	3 830 370	158 487 331	6 421 305	1 463 178 931	1 456 757 626
Year 10	0		6 421 305		0	39 735 913	1 276 195 247	3 830 370	160 298 310	6 421 305	1 480 059 840	1 473 638 535
Year 11	0		6 421 305		0	40 076 477	1 290 924 612	3 830 370	162 109 288	6 421 305	1 496 940 747	1 490 519 442
Year 12	0		6 421 305		0	40 417 042	1 305 653 977	3 830 370	163 920 267	6 421 305	1 513 821 656	1 507 400 351
Year 13	0		6 421 305		0	40 757 606	1 320 383 342	3 830 370	165 731 245	6 421 305	1 530 702 563	1 524 281 258
Year 14	0		6 421 305		0	41 098 171	1 335 112 708	3 830 370	167 542 224	6 421 305	1 547 583 473	1 541 162 168
Year 15	0		6 421 305		0	41 438 735	1 349 842 073	3 830 370	169 353 202	6 421 305	1 564 464 380	1 558 043 075
Year 16	0		6 421 305		0	41 779 300	1 364 571 438	3 830 370	171 164 181	6 421 305	1 581 345 289	1 574 923 984
Year 17	0		6 421 305		0	42 119 864	1 379 300 803	3 830 370	172 975 159	6 421 305	1 598 226 196	1 591 804 891
Year 18	0		6 421 305		0	42 460 429	1 394 030 168	3 830 370	174 786 138	6 421 305	1 615 107 105	1 608 685 800
Year 19	0		6 421 305		0	42 800 993	1 408 759 533	3 830 370	176 597 116	6 421 305	1 631 988 012	1 625 566 707

		City: City Name		Project:	Project name		Measure numb	oer: x.y		
Year 20	0	6 421 305	0	43 141 558	1 423 488 898	3 830 370	178 408 095	6 421 305	1 648 868 921	1 642 447 616
Year 21	0	6 421 305	0	43 482 122	1 438 218 263	3 830 370	180 219 073	6 421 305	1 665 749 828	1 659 328 523
Year 22	0	6 421 305	0	43 822 686	1 452 947 628	3 830 370	182 030 052	6 421 305	1 682 630 736	1 676 209 431
Year 23	0	6 421 305	0	44 163 251	1 467 676 993	3 830 370	183 841 030	6 421 305	1 699 511 644	1 693 090 339
Year 24	0	6 421 305	0	44 503 815	1 482 406 358	3 830 370	185 652 009	6 421 305	1 716 392 552	1 709 971 247
Year 25	0	6 421 305	0	44 844 380	1 497 135 723	3 830 370	187 462 987	6 421 305	1 733 273 460	1 726 852 155
Year 26	0	6 421 305	0	45 184 944	1 511 865 088	3 830 370	189 273 966	6 421 305	1 750 154 368	1 743 733 063
Year 27	0	6 421 305	0	45 525 509	1 526 594 453	3 830 370	191 084 944	6 421 305	1 767 035 276	1 760 613 971
Year 28	0	6 421 305	0	45 866 073	1 541 323 818	3 830 370	192 895 923	6 421 305	1 783 916 184	1 777 494 879
Year 29	0	6 421 305	0	46 206 638	1 556 053 183	3 830 370	194 706 901	6 421 305	1 800 797 092	1 794 375 787
Year 30	0	6 421 305	0	46 547 202	1 570 782 548	3 830 370	196 517 880	6 421 305	1 817 678 000	1 811 256 695
Year 31	0	6 421 305	0	46 887 767	1 585 511 913	3 830 370	198 328 858	6 421 305	1 834 558 908	1 828 137 603
Year 32	0	6 421 305	0	47 228 331	1 600 241 279	3 830 370	200 139 837	6 421 305	1 851 439 817	1 845 018 512
Total	2 300 000	205 481 760	0	1 339 223 517	43 711 065 866	122 571 840	5 482 587 865	207 781 760	50 655 449 088	50 447 667 328

Noise Reduction + Efficient Goods Distribution in ÚNL

Noise Reduction + Efficient Goods Distribution in ÚNL

City: City Name

Project: Project name

Table 42	2 – Lifetime c	ost/benefits	of the referen	ce measure/ca	ase – 0 variant	(discounted) -	table format v	version II			
	Capital cost	Operation	Maintenance	Other cost (salvage value)	Savings from accident reductions	Savings from Journey time savings	Savings from reductions of environmental emissions	Operation costs of users	Total	Total	Cumulated
		cost	cost						cost	Benefit	cost
Year 1	0		6 421 305	0	35 124 488	955 307 116	4 142 949	129 855 614	6 421 305	1 124 430 167	1 118 008 862
Year 2	0		6 421 305	0	36 363 971	1 021 752 465	4 142 949	138 574 714	6 421 305	1 200 834 099	1 194 412 794
Year 3	0		6 421 305	0	37 603 455	1 088 197 813	4 142 949	147 293 815	6 421 305	1 277 238 032	1 270 816 727
Year 4	0		6 421 305	0	37 961 276	1 102 263 656	4 142 949	149 142 981	6 421 305	1 293 510 862	1 287 089 557
Year 5	0		6 421 305	0	38 319 097	1 116 329 498	4 142 949	150 992 147	6 421 305	1 309 783 691	1 303 362 386
Year 6	0		6 421 305	0	38 676 918	1 130 395 341	4 142 949	152 841 313	6 421 305	1 326 056 521	1 319 635 216
Year 7	0		6 421 305	0	39 034 739	1 144 461 183	4 142 949	154 690 479	6 421 305	1 342 329 350	1 335 908 045
Year 8	0		6 421 305	0	39 392 561	1 158 527 026	4 142 949	156 539 645	6 421 305	1 358 602 181	1 352 180 876
Year 9	0		6 421 305	0	39 750 382	1 172 592 868	4 142 949	158 388 811	6 421 305	1 374 875 010	1 368 453 705
Year 10	0		6 421 305	0	40 108 203	1 186 658 711	4 142 949	160 237 977	6 421 305	1 391 147 840	1 384 726 535
Year 11	0		6 421 305	0	40 466 024	1 200 724 553	4 142 949	162 087 143	6 421 305	1 407 420 669	1 400 999 364
Year 12	0		6 421 305	0	40 823 845	1 214 790 396	4 142 949	163 936 309	6 421 305	1 423 693 499	1 417 272 194
Year 13	0		6 421 305	0	41 181 667	1 228 856 238	4 142 949	165 785 475	6 421 305	1 439 966 329	1 433 545 024
Year 14	0		6 421 305	0	41 539 488	1 242 922 081	4 142 949	167 634 641	6 421 305	1 456 239 159	1 449 817 854
Year 15	0		6 421 305	0	41 897 309	1 256 987 923	4 142 949	169 483 807	6 421 305	1 472 511 988	1 466 090 683
Year 16	0		6 421 305	0	42 255 130	1 271 053 766	4 142 949	171 332 973	6 421 305	1 488 784 818	1 482 363 513
Year 17	0		6 421 305	0	42 612 952	1 285 119 608	4 142 949	173 182 139	6 421 305	1 505 057 648	1 498 636 343
Year 18	0		6 421 305	0	42 970 773	1 299 185 451	4 142 949	175 031 305	6 421 305	1 521 330 478	1 514 909 173
Year 19	0		6 421 305	0	43 328 594	1 313 251 293	4 142 949	176 880 471	6 421 305	1 537 603 307	1 531 182 002

		City: City Name		Project:	Project name		Measure numb	oer: x.y		
Year 20	0	6 421 305	0	43 686 415	1 327 317 136	4 142 949	178 729 637	6 421 305	1 553 876 137	1 547 454 832
Year 21	0	6 421 305	0	44 044 236	1 341 382 978	4 142 949	180 578 803	6 421 305	1 570 148 966	1 563 727 661
Year 22	0	6 421 305	0	44 402 058	1 355 448 821	4 142 949	182 427 969	6 421 305	1 586 421 797	1 580 000 492
Year 23	0	6 421 305	0	44 759 879	1 369 514 663	4 142 949	184 277 135	6 421 305	1 602 694 626	1 596 273 321
Year 24	0	6 421 305	0	45 117 700	1 383 580 506	4 142 949	186 126 301	6 421 305	1 618 967 456	1 612 546 151
Year 25	0	6 421 305	0	45 475 521	1 397 646 348	4 142 949	187 975 467	6 421 305	1 635 240 285	1 628 818 980
Year 26	0	6 421 305	0	45 833 343	1 411 712 191	4 142 949	189 824 633	6 421 305	1 651 513 116	1 645 091 811
Year 27	0	6 421 305	0	46 191 164	1 425 778 033	4 142 949	191 673 799	6 421 305	1 667 785 945	1 661 364 640
Year 28	0	6 421 305	0	46 548 985	1 439 843 876	4 142 949	193 522 965	6 421 305	1 684 058 775	1 677 637 470
Year 29	0	6 421 305	0	46 906 806	1 453 909 718	4 142 949	195 372 131	6 421 305	1 700 331 604	1 693 910 299
Year 30	0	6 421 305	0	47 264 627	1 467 975 561	4 142 949	197 221 297	6 421 305	1 716 604 434	1 710 183 129
Year 31	0	6 421 305	0	47 622 449	1 482 041 403	4 142 949	199 070 463	6 421 305	1 732 877 264	1 726 455 959
Year 32	0	6 421 305	0	47 980 270	1 496 107 246	4 142 949	200 919 629	6 421 305	1 749 150 094	1 742 728 789
Total	0	205 481 760	0	1 355 244 325	40 741 635 466	132 574 368	5 491 631 988	205 481 760	47 721 086 147	47 515 604 387

Measure title: Noise Reduction + Efficient Goods Distribution in ÚNL Project: Project name City: City Name Measure number: x.y Table 43 – Calculation of NPV for the variant E 1 2 2012 10 11 12 13 14 15 6 2011 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Undiscounted cash flow Changes in total cost (€) 431 450 000 431 450 000 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 73 959 739 959 739 Changes in total benefit (€) 66 604 441 67 876 20 69 147 975 70 419 743 71 691 510 72 963 278 74 235 045 75 506 812 76 778 580 78 050 347 79 322 115 81 865 649 33 263 229 80 593 882 Net cash flow (€) -431 450 000 -398 186 771 65 644 702 66 916 469 68 188 236 69 460 004 70 731 771 72 003 539 73 275 306 74 547 073 75 818 841 77 090 608 78 362 376 79 634 143 80 905 910 **Discount Factors** 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% Discount Rate 2011 Base Year Discounted cash flow 431 450 000 408 957 346 862 28 817 327 774 717 734 329 696 047 659 760 625 365 592 763 561 861 532 569 504 80 478 488 453 543 Changes in total cost (€) 50 157 643 Changes in total benefit (€) 31 529 127 59 840 921 57 804 306 55 817 404 53 880 564 48 371 471 46 635 217 44 948 528 43 310 957 41 721 96 40 180 941 38 687 198 51 993 969 Net cash flow (€) -431 450 000 47 746 107 -377 428 219 58 978 641 56 986 979 55 042 686 53 146 235 51 297 922 49 497 883 46 042 454 44 386 668 42 778 38 41 217 16 39 702 453 38 233 655 Cumulative cash flow (€) -431 450 000 -808 878 219 -749 899 57 -692 912 59 -637 869 913 -584 723 677 -533 425 755 -483 927 872 -436 181 76 -390 139 312 -345 752 644 -302 974 25 -261 757 09 -222 054 642 -183 820 987 Changes in NPV (€) 350 989 252 18 19 20 21 22 27 28 29 30 16 17 23 24 25 26 31 30 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 959 739 -361 460 261 88 224 486 92 039 788 94 583 323 95 855 090 83 137 417 84 409 184 85 680 951 86 952 719 89 496 254 90 768 021 93 311 556 97 126 858 98 398 625 99 670 393 100 942 160 102 213 923 103 485 69 82 177 678 83 449 445 84 721 212 85 992 980 87 264 747 88 536 51 89 808 282 91 080 049 92 351 817 93 623 584 94 895 351 96 167 119 97 438 886 98 710 654 99 982 421 101 254 188 464 945 956 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 429 899 407 487 386 244 366 108 347 022 328 930 311 782 295 528 280 122 265 518 251 676 238 555 226 119 214 331 203 157 192 566 -68 743 923 30 672 958 22 258 572 35 838 543 33 169 498 31 900 126 29 487 042 28 341 413 27 235 093 26 167 097 25 136 435 24 142 119 23 183 159 19 681 313 37 239 996 34 482 002 21 367 380 20 508 613 34 095 758 32 803 390 36 810 098 35 431 056 31 553 105 30 344 028 29 175 260 28 045 885 26 954 971 25 901 578 24 884 75 23 903 564 22 957 041 22 044 241 21 164 223 20 316 047 88 425 23 -147 010 890 -111 579 833 -77 484 076 -44 680 686 -13 127 581 17 216 447 46 391 707 74 437 592 101 392 56 127 294 142 152 178 901 176 082 465 199 039 505 221 083 747 242 247 969 262 564 016 350 989 25

Measure title: Noise Reduction + Efficient Goods Distribution in ÚNL Project: Project name City: City Name Measure number: x.y Table 44 – Calculation of NPV for the variant F 1 2 2012 10 11 14 15 12 13 6 2011 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Undiscounted cash flow Changes in total cost (€) 2 300 000 Changes in total benefit (€) -58 571 729 -71 613 591 -84 655 453 -85 263 531 -85 871 609 -86 479 687 -87 087 766 -87 695 844 -88 303 922 -88 912 001 -89 520 079 -90 128 157 -90 736 23 -91 344 314 -91 952 392 Net cash flow (€) -60 871 729 -71 613 591 -84 655 453 -85 263 531 -85 871 609 -86 479 687 -87 087 766 -87 695 844 -88 303 922 -88 912 001 -89 520 079 -90 128 157 -90 736 236 -91 344 314 -91 952 392 **Discount Factors** Discount Rate 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% Base Year 2011 Discounted cash flow Changes in total cost (€) 2 300 000 Changes in total benefit (€) -67 880 181 -76 058 896 -72 611 588 -69 317 001 -66 168 580 -63 160 039 -60 285 351 -57 538 736 -54 914 653 -52 407 792 -50 013 061 -47 725 58 -58 571 729 -45 540 683 -43 453 884 Net cash flow (€) -67 880 181 -72 611 588 -69 317 001 -66 168 580 -63 160 039 -57 538 736 -54 914 653 -52 407 792 -50 013 061 -47 725 58 -45 540 683 -43 453 884 -60 871 729 -76 058 896 -60 285 351 Cumulative cash flow (€) -60 871 729 -128 751 911 -204 810 806 -277 422 394 -346 739 395 -412 907 975 -476 068 014 -536 353 365 -593 892 10 -648 806 755 -701 214 546 -751 227 60 -798 953 19 -844 493 873 -887 947 757 Changes in NPV (€) -1 384 198 347 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 -93 168 549 -93 776 627 -94 384 705 -94 992 784 -95 600 862 -96 208 940 -96 817 019 -97 425 097 -98 033 175 -98 641 253 -99 249 332 -99 857 410 -100 465 488 -101 073 567 -101 681 645 -102 289 723 -92 560 470 -92 560 470 -93 168 549 -93 776 627 -94 384 705 -94 992 784 -95 600 862 -96 208 940 -96 817 019 -97 425 097 98 033 175 98 641 253 99 249 332 -99 857 410 -100 465 488 -101 073 567 -101 681 645 -102 289 72 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% 5,5% -41 460 894 -39 557 604 -37 740 078 -36 004 547 -34 347 401 -32 765 184 -31 254 588 -29 812 445 -28 435 723 -27 121 521 -25 867 061 -24 669 687 -23 526 856 -22 436 134 -21 395 196 -20 401 814 -19 453 85 -41 460 894 -39 557 604 -37 740 078 -36 004 547 -34 347 401 -32 765 184 -31 254 588 -29 812 445 -28 435 723 -27 121 521 -25 867 061 -24 669 687 -23 526 856 -22 436 134 -21 395 196 -20 401 814 -19 453 85 -929 408 651 -968 966 254 -1 006 706 333 -1 042 710 880 -1 077 058 281 -1 109 823 465 -1 141 078 053 -1 170 890 498 -1 199 326 221 -1 226 447 741 -1 252 314 803 -1 276 984 490 -1 300 511 345 -1 322 947 480 -1 344 342 675 -1 364 744 489 -1 384 198 347

C2.6.5 SUMMARY OF CBA RESULTS

The economic analysis shows positive results for the variant E proposing construction of the system of bypasses leading traffic away from the sensitive zones in the city. With the defined investment and operation costs and with calculated environmental benefits, the scenario is economically feasible. On the other hand, speed reduction proposed in the variant F proved as economically not effective solutions and thus not feasible.

C3 Achievement of quantifiable targets and objectives

No.	Target	Rating
2a	+ 5 %	***
2b	-	NA
2c	-	NA
	Noise Impact 25 %	***
	Noise level - 5 %	0
8	- 5 %	NA
9	- 5 %	*
10	- 5 %	0
11	- 5 %	NA
25	- 15 %	0
NA = Nc	of Assessed $\mathbf{O} = \mathbf{Not} \mathbf{Achieved} \bigstar = \mathbf{Substantially} achieved (at let$	east 50%)
	** = Achieved in full *** = Exceeded	

C4 Up-scaling of results

Scenarios for noise reduction are proposed for the entire city territory. The principle of the scenarios is applicable also for other cities or regions, with regard to local conditions, transport infrastructure and transport requirements.

C5 Appraisal of evaluation approach

Effectiveness of proposed scenarios was assessed through the traffic model. Based on modelling the evaluation scenarios, data about transport performance and emitted pollution were gathered. Transport model is grounded on the national traffic census and calibrated by the coefficient of transport development. Economic indicators were defined by standard methodology used for economic evaluation of effectiveness of road structures in the Czech Republic and by CBA Recommendations for CIVITAS Evaluation, J. Piao and J. Preston.

C5.1 Traffic model of the city

The traffic model covers the entire cadastral territory of the city of Ústí nad Labem. It involves detail transport relations within the city, taking fully into account transport links leading from, to and across the city area. The model of the city simulates all details of the city road network, including directional lines, width ratios, number of driving lanes, permitted speed limit and PT routes. The transport infrastructure outside the city is modelled with fewer details, only to reflect national and international transport relations.

The proposed restrictions regulate traffic in the city centre while preserving routes for transit traffic. Due to the fact, that the city lacks suitable large capacity superior roads bypassing the sensitive area, it was necessary to maintain throughput of the main I and II class arteries.

Calibration of the traffic model was realised by the national traffic census from the years 2005 and 2010, which is conducted every five years by the Directorate of Roads and Highways in the Czech Republic. Furthermore, the traffic model calculates with coefficients for predicted traffic growth officially published by the Directorate. These inputs provide an overview of the traffic performance and composition of the traffic flow on major roads on the entire territory of the Czech Republic.

To refine the model, Municipal employees realised traffic counting at selected locations in the city. In addition, data from sensors of traffic light devices, automatic traffic counters and schedules of public transport in the city were used for model calibrations.

Model simulations present the state of traffic in a perspective situation, according to set parameters, based on factors of traffic growth (with respect to the economic and social development), changes in transport infrastructure and changes in the distribution of transport sources and destinations.

Because of exact input data and sophisticated software, model results are considered reliable.

Figure C5.1.1: The physical extend of the city traffic model used for measure evaluation

C6 Summary of evaluation results

- **Key result 1** reduction of traffic speed is not an efficient tool for noise reduction and results in only slight decrease of traffic noise and therefore is certain decrease in the amount of population exposed to noise levels above 60 dB, however, amount of pollutants increases and heavy traffic level remains in densely populated city areas (with increased time loss).
- Key result 2 construction of city bypasses is a feasible and profitable solution, leading the unnecessary traffic away from sensitive areas

C7 Future activities relating to the measure

To significantly reduce unnecessary traffic transiting Ústí nad Labem, it is necessary to finish the highway D8, which remains under construction and faces unrelenting resistance from environmentalists, postponing its completion into uncertainty.

To support noise reduction, it is adequate to regulate entrance to the city centre and establish suitable alternative routes in order to redirect intensive traffic from densely populated areas. At the same time, it is desirable to remain transport services in the area to ensure functions of the city centre.

The complex of solutions for noise reduction was processed into the SUTP of the city, which will be submitted to city authorities for approval and subsequent implementation of the relevant action plan.

City: City Name

D Process Evaluation Findings

D.0 Focused measure

2*	0	No focussed measure
3*	1	Most important reason
6*	2	Second most important reason
8*	3	Third most important reason

*) Reasons from checklist in Guidelines for the Completion of the MERT

D.1 Deviations from the original plan

- **Deviation 1** Scenario E recommended within the measure and evaluated as the most effective solution proposes implementation of city bypasses leading unnecessary traffic away from sensitive areas in the city. This solution complied with the previous version of the city Master Plan of Ústí nad Labem, which, however, changed during the project period and the latest approved version of the Master Plan does not include it. Moreover, the solution became undesirable due to protests of a local civic association called Stop the Tunnels, which refuses construction of any new motor transport infrastructure in the city. Current political authorities in the city demanded removal of the solution from the SUTP in order to have the document accepted by the city. In the current political atmosphere, city bypasses cannot be included in the SUTP and therefore, the solution was removed.
- **Deviation 2** CO₂ emissions and particulates could not be calculated by the existing traffic model, because the current version used by the city does not feature such application.

D.2 Barriers and drivers

D.2.1 Barriers

Preparation phase

- **Political/strategic barrier** (1) There is no political support for radical but highly efficient solutions, rather soft measures are supported.
- Institutional barrier (2) Integration with the Master Plan of the city, which was being developed within project duration, proved to be complicated.
- **Planning barrier (7)** Problem of noise in the city is a very complex issue requiring to consider wide range of background information and influencing conditions, such as the necessity to consider extraordinary noise sources, weather, background noise, construction works etc.
- **Problem related barrier (4)** Traffic model calculations in the current state are based on real-life data. However, prognosis for future years may be imprecise using an

inaccurate coefficient of transport development, which is influenced by various factors, such as area development, population development, economic development of region, state and Europe etc.

Implementation phase

- **Organizational barrier (8)** Noise measurements were possible only during certain periods, which along with traffic closures and construction works in the city hindered the process.
- **Problem related barrier** (4) When considering individual scenarios, the issue of shifting the problem to different fields appeared (speed, emissions, pollution)

Operation phase

• Financial barrier (9) - Results of the measures will be complicated to realise in real life due to high financial demands of implementing new infrastructure and political unwillingness to deal with the problem.

D.2.2 Drivers

Preparation phase

- Communication driver (5) Currently, there are discussions of experts at national scale about lowering permitted noise limits in the city and avoiding shifting the problem elsewhere, which results in more urgent need in addressing the issue in the city.
- **Involvement driver (5)** Solutions reducing noise impact of traffic, proposing more fluent traffic with lower emissions and improving the living environment in the city is required in the city and demanded by its residents.
- Institutional driver (2) The existing absence of a traffic noise solution for the city results in conflict with the current valid law, therefore the situation needs to be solved urgently. Laws and regulations demand noise improvements.

Implementation phase

• **Technological driver (10)** – Traffic modelling and evaluation proved efficiency of proposed scenarios (mostly the scenario E involving construction of city bypasses), even if the implementation is not currently supported in the city.

Operation phase

- **Positional driver** (6) The measure is focused on sensitive areas in the city, primarily the city centre, residential areas, schools and hospitals, which are prioritised for improvements and supported by citizens.
- **Problem related** (4) Pressure of the problem requires implementing a solution and improving the conditions.

City: City Name

Project: Project name

D.2.3 Activities

4 Problem related

Preparation phase

- Planning activities (7) Timing of noise measurements was rescheduled to better fit local circumstances and to allow development of an accurate noise map for current and foreseen transport in the city.
- **Problem related activities (4)** Issue of precise noise measurements were solved by gathering more noise inputs and modelling in more detailed differentiation.

Implementation phase

- Communication activities (5) Discussing the results for noise reducing solutions with the public and with city authorities during the process of SUTP development is ongoing.
- **Technology activities** (10) Traffic modelling reveals foreseen state and efficiency of proposed solutions and enables visualisation of results and their graphical presentation.

Operation phase

• No activities — The measure is not operated in real life.

D.3 Participation

D.3.1. Measure Partners

• Ústí nad Labem Municipality

D.3.2 Stakeholders

- Residents
- Car drivers and motorists
- General public

City: City Name

D.4 Recommendations

D.4.1 Recommendations: measure replication

• **Recommendation 1** – For traffic noise improvements, it is recommended to use the method of traffic modelling to visualise and asses proposed variants, but the model must be calibrated to precise values. It is always recommended to compare model and real-life results measured in the city.

• **Recommendation 2** – Proposed scenarios for noise reduction are addressing sensitive areas in the city and are suitable for exploitation of results to other urban areas, other cities or regions.

D.4.2 Recommendations: process (related to barrier-, driver- and action fields)

• **Recommendation 1** – Gain political and public support for approval and subsequent implementation of suitable solutions by extensive communication of results.

• **Recommendation 2** – Carry through major changes in the transport scheme by preserving consistent pressure towards the set goals.

• **Recommendation 3** – Ensure required resources for measure implementation in the city.